Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add Completions API support #88

Merged
merged 10 commits into from
Aug 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 23 additions & 0 deletions libs/ai-endpoints/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -225,6 +225,29 @@ llm.invoke(
)
```

## Completions

You can also work with models that support the Completions API. These models accept a `prompt` instead of `messages`.

```python
completions_llm = NVIDIA().bind(max_tokens=512)
[model.id for model in completions_llm.get_available_models()]

# [
# ...
# 'bigcode/starcoder2-7b',
# 'bigcode/starcoder2-15b',
# ...
# ]
```

```python
prompt = "# Function that does quicksort written in Rust without comments:"
for chunk in completions_llm.stream(prompt):
print(chunk, end="", flush=True)
```


## Embeddings

You can also connect to embeddings models through this package. Below is an example:
Expand Down
250 changes: 250 additions & 0 deletions libs/ai-endpoints/docs/llms/nvidia_ai_endpoints.ipynb
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

lgtm!

Original file line number Diff line number Diff line change
@@ -0,0 +1,250 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# NVIDIA NIMs\n",
"\n",
":::caution\n",
"You are currently on a page documenting the use of models as [text completion models](/docs/concepts/#llms).\n",
"Many popular models are [chat completion models](/docs/concepts/#chat-models).\n",
"\n",
"To use chat completion models, use [ChatNVIDIA](/docs/integrations/chat/nvidia_ai_endpoints/) instead.\n",
":::\n",
"\n",
"The `langchain-nvidia-ai-endpoints` package contains LangChain integrations building applications with models on \n",
"NVIDIA NIM inference microservice. NIM supports models across domains like chat, completion, embedding, and re-ranking models \n",
"from the community as well as NVIDIA. These models are optimized by NVIDIA to deliver the best performance on NVIDIA \n",
"accelerated infrastructure and deployed as a NIM, an easy-to-use, prebuilt containers that deploy anywhere using a single \n",
"command on NVIDIA accelerated infrastructure.\n",
"\n",
"NVIDIA hosted deployments of NIMs are available to test on the [NVIDIA API catalog](https://build.nvidia.com/). After testing, \n",
"NIMs can be exported from NVIDIA’s API catalog using the NVIDIA AI Enterprise license and run on-premises or in the cloud, \n",
"giving enterprises ownership and full control of their IP and AI application.\n",
"\n",
"NIMs are packaged as container images on a per model basis and are distributed as NGC container images through the NVIDIA NGC Catalog. \n",
"At their core, NIMs provide easy, consistent, and familiar APIs for running inference on an AI model.\n",
"\n",
"This example goes over how to use LangChain to interact with NVIDIA supported via the `NVIDIA` class.\n",
"\n",
"For more information on accessing the completion models through this api, check out the [NVIDIA](https://python.langchain.com/docs/integrations/llms/nvidia_ai_endpoints/) documentation.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Installation"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#%pip install -qU langchain-nvidia-ai-endpoints"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Setup\n",
"\n",
"**To get started:**\n",
"\n",
"1. Create a free account with [NVIDIA](https://build.nvidia.com/), which hosts NVIDIA AI Foundation models.\n",
"\n",
"2. Click on your model of choice.\n",
"\n",
"3. Under `Input` select the `Python` tab, and click `Get API Key`. Then click `Generate Key`.\n",
"\n",
"4. Copy and save the generated key as `NVIDIA_API_KEY`. From there, you should have access to the endpoints."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"from getpass import getpass\n",
"\n",
"# del os.environ['NVIDIA_API_KEY'] ## delete key and reset\n",
"if os.environ.get(\"NVIDIA_API_KEY\", \"\").startswith(\"nvapi-\"):\n",
" print(\"Valid NVIDIA_API_KEY already in environment. Delete to reset\")\n",
"else:\n",
" candidate_api_key = getpass(\"NVAPI Key (starts with nvapi-): \")\n",
" assert candidate_api_key.startswith(\"nvapi-\"), f\"{candidate_api_key[:5]}... is not a valid key\"\n",
" os.environ[\"NVIDIA_API_KEY\"] = candidate_api_key"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Usage\n",
"\n",
"See [LLM](/docs/how_to#llms) for full functionality."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain_nvidia_ai_endpoints import NVIDIA"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm = NVIDIA().bind(max_tokens=256)\n",
"llm"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"prompt = \"# Function that does quicksort written in Rust without comments:\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(llm.invoke(prompt))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Stream, Batch, and Async\n",
"\n",
"These models natively support streaming, and as is the case with all LangChain LLMs they expose a batch method to handle concurrent requests, as well as async methods for invoke, stream, and batch. Below are a few examples."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for chunk in llm.stream(prompt):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"llm.batch([prompt])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await llm.ainvoke(prompt)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async for chunk in llm.astream(prompt):\n",
" print(chunk, end=\"\", flush=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"await llm.abatch([prompt])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async for chunk in llm.astream_log(prompt):\n",
" print(chunk)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"response = llm.invoke(\n",
" \"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1) #Train a logistic regression model, predict the labels on the test set and compute the accuracy score\"\n",
")\n",
"print(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Supported models\n",
"\n",
"Querying `available_models` will still give you all of the other models offered by your API credentials."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"NVIDIA.get_available_models()\n",
"# llm.get_available_models()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "langchain-nvidia-ai-endpoints-m0-Y4aGr-py3.10",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.14"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
raspawar marked this conversation as resolved.
Show resolved Hide resolved
10 changes: 9 additions & 1 deletion libs/ai-endpoints/langchain_nvidia_ai_endpoints/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,14 @@
from langchain_nvidia_ai_endpoints._statics import Model, register_model
from langchain_nvidia_ai_endpoints.chat_models import ChatNVIDIA
from langchain_nvidia_ai_endpoints.embeddings import NVIDIAEmbeddings
from langchain_nvidia_ai_endpoints.llm import NVIDIA
from langchain_nvidia_ai_endpoints.reranking import NVIDIARerank

__all__ = ["ChatNVIDIA", "NVIDIAEmbeddings", "NVIDIARerank", "register_model", "Model"]
__all__ = [
"ChatNVIDIA",
"NVIDIA",
"NVIDIAEmbeddings",
"NVIDIARerank",
"register_model",
"Model",
]
37 changes: 25 additions & 12 deletions libs/ai-endpoints/langchain_nvidia_ai_endpoints/_statics.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,8 +10,8 @@ class Model(BaseModel):
Model information.

id: unique identifier for the model, passed as model parameter for requests
model_type: API type (chat, vlm, embedding, ranking, completion)
client: client name, e.g. ChatNVIDIA, NVIDIAEmbeddings, NVIDIARerank
model_type: API type (chat, vlm, embedding, ranking, completions)
client: client name, e.g. ChatNVIDIA, NVIDIAEmbeddings, NVIDIARerank, NVIDIA
endpoint: custom endpoint for the model
aliases: list of aliases for the model
supports_tools: whether the model supports tool calling
Expand All @@ -23,9 +23,11 @@ class Model(BaseModel):
id: str
# why do we have a model_type? because ChatNVIDIA can speak both chat and vlm.
model_type: Optional[
Literal["chat", "vlm", "embedding", "ranking", "completion", "qa"]
Literal["chat", "vlm", "embedding", "ranking", "completions", "qa"]
] = None
client: Optional[
Literal["ChatNVIDIA", "NVIDIAEmbeddings", "NVIDIARerank", "NVIDIA"]
] = None
client: Optional[Literal["ChatNVIDIA", "NVIDIAEmbeddings", "NVIDIARerank"]] = None
endpoint: Optional[str] = None
aliases: Optional[list] = None
supports_tools: Optional[bool] = False
Expand All @@ -42,6 +44,7 @@ def validate_client(cls, client: str, values: dict) -> str:
"ChatNVIDIA": ("chat", "vlm", "qa"),
"NVIDIAEmbeddings": ("embedding",),
"NVIDIARerank": ("ranking",),
"NVIDIA": ("completions",),
}
model_type = values.get("model_type")
if model_type not in supported[client]:
Expand Down Expand Up @@ -491,14 +494,23 @@ def validate_client(cls, client: str, values: dict) -> str:
),
}

# COMPLETION_MODEL_TABLE = {
# "mistralai/mixtral-8x22b-v0.1": Model(
# id="mistralai/mixtral-8x22b-v0.1",
# model_type="completion",
# client="NVIDIA",
# aliases=["ai-mixtral-8x22b"],
# ),
# }
COMPLETION_MODEL_TABLE = {
"bigcode/starcoder2-7b": Model(
id="bigcode/starcoder2-7b",
model_type="completions",
client="NVIDIA",
),
"bigcode/starcoder2-15b": Model(
id="bigcode/starcoder2-15b",
model_type="completions",
client="NVIDIA",
),
"nvidia/mistral-nemo-minitron-8b-base": Model(
id="nvidia/mistral-nemo-minitron-8b-base",
model_type="completions",
client="NVIDIA",
),
}


OPENAI_MODEL_TABLE = {
Expand All @@ -518,6 +530,7 @@ def validate_client(cls, client: str, values: dict) -> str:
**VLM_MODEL_TABLE,
**EMBEDDING_MODEL_TABLE,
**RANKING_MODEL_TABLE,
**COMPLETION_MODEL_TABLE,
}

if "_INCLUDE_OPENAI" in os.environ:
Expand Down
Loading
Loading