-
Notifications
You must be signed in to change notification settings - Fork 21
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #88 from langchain-ai/mattf/add-completions-support
add Completions API support
- Loading branch information
Showing
13 changed files
with
937 additions
and
15 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,250 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# NVIDIA NIMs\n", | ||
"\n", | ||
":::caution\n", | ||
"You are currently on a page documenting the use of models as [text completion models](/docs/concepts/#llms).\n", | ||
"Many popular models are [chat completion models](/docs/concepts/#chat-models).\n", | ||
"\n", | ||
"To use chat completion models, use [ChatNVIDIA](/docs/integrations/chat/nvidia_ai_endpoints/) instead.\n", | ||
":::\n", | ||
"\n", | ||
"The `langchain-nvidia-ai-endpoints` package contains LangChain integrations building applications with models on \n", | ||
"NVIDIA NIM inference microservice. NIM supports models across domains like chat, completion, embedding, and re-ranking models \n", | ||
"from the community as well as NVIDIA. These models are optimized by NVIDIA to deliver the best performance on NVIDIA \n", | ||
"accelerated infrastructure and deployed as a NIM, an easy-to-use, prebuilt containers that deploy anywhere using a single \n", | ||
"command on NVIDIA accelerated infrastructure.\n", | ||
"\n", | ||
"NVIDIA hosted deployments of NIMs are available to test on the [NVIDIA API catalog](https://build.nvidia.com/). After testing, \n", | ||
"NIMs can be exported from NVIDIA’s API catalog using the NVIDIA AI Enterprise license and run on-premises or in the cloud, \n", | ||
"giving enterprises ownership and full control of their IP and AI application.\n", | ||
"\n", | ||
"NIMs are packaged as container images on a per model basis and are distributed as NGC container images through the NVIDIA NGC Catalog. \n", | ||
"At their core, NIMs provide easy, consistent, and familiar APIs for running inference on an AI model.\n", | ||
"\n", | ||
"This example goes over how to use LangChain to interact with NVIDIA supported via the `NVIDIA` class.\n", | ||
"\n", | ||
"For more information on accessing the completion models through this api, check out the [NVIDIA](https://python.langchain.com/docs/integrations/llms/nvidia_ai_endpoints/) documentation.\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Installation" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"#%pip install -qU langchain-nvidia-ai-endpoints" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Setup\n", | ||
"\n", | ||
"**To get started:**\n", | ||
"\n", | ||
"1. Create a free account with [NVIDIA](https://build.nvidia.com/), which hosts NVIDIA AI Foundation models.\n", | ||
"\n", | ||
"2. Click on your model of choice.\n", | ||
"\n", | ||
"3. Under `Input` select the `Python` tab, and click `Get API Key`. Then click `Generate Key`.\n", | ||
"\n", | ||
"4. Copy and save the generated key as `NVIDIA_API_KEY`. From there, you should have access to the endpoints." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import os\n", | ||
"from getpass import getpass\n", | ||
"\n", | ||
"# del os.environ['NVIDIA_API_KEY'] ## delete key and reset\n", | ||
"if os.environ.get(\"NVIDIA_API_KEY\", \"\").startswith(\"nvapi-\"):\n", | ||
" print(\"Valid NVIDIA_API_KEY already in environment. Delete to reset\")\n", | ||
"else:\n", | ||
" candidate_api_key = getpass(\"NVAPI Key (starts with nvapi-): \")\n", | ||
" assert candidate_api_key.startswith(\"nvapi-\"), f\"{candidate_api_key[:5]}... is not a valid key\"\n", | ||
" os.environ[\"NVIDIA_API_KEY\"] = candidate_api_key" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Usage\n", | ||
"\n", | ||
"See [LLM](/docs/how_to#llms) for full functionality." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from langchain_nvidia_ai_endpoints import NVIDIA" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"llm = NVIDIA().bind(max_tokens=256)\n", | ||
"llm" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"prompt = \"# Function that does quicksort written in Rust without comments:\"" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"print(llm.invoke(prompt))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Stream, Batch, and Async\n", | ||
"\n", | ||
"These models natively support streaming, and as is the case with all LangChain LLMs they expose a batch method to handle concurrent requests, as well as async methods for invoke, stream, and batch. Below are a few examples." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"for chunk in llm.stream(prompt):\n", | ||
" print(chunk, end=\"\", flush=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"llm.batch([prompt])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"await llm.ainvoke(prompt)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"async for chunk in llm.astream(prompt):\n", | ||
" print(chunk, end=\"\", flush=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"await llm.abatch([prompt])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"async for chunk in llm.astream_log(prompt):\n", | ||
" print(chunk)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"response = llm.invoke(\n", | ||
" \"X_train, y_train, X_test, y_test = train_test_split(X, y, test_size=0.1) #Train a logistic regression model, predict the labels on the test set and compute the accuracy score\"\n", | ||
")\n", | ||
"print(response)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## Supported models\n", | ||
"\n", | ||
"Querying `available_models` will still give you all of the other models offered by your API credentials." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"NVIDIA.get_available_models()\n", | ||
"# llm.get_available_models()" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "langchain-nvidia-ai-endpoints-m0-Y4aGr-py3.10", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.14" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.