generated from kyegomez/Python-Package-Template
-
-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Kye
committed
Jan 22, 2024
1 parent
b53a916
commit 3a99c01
Showing
1 changed file
with
124 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,124 @@ | ||
import torch | ||
from torch import nn | ||
from zeta.nn import RMSNorm, MambaBlock | ||
from swarms_torch import SwitchMoE | ||
|
||
class MoEMambaBlock(nn.Module): | ||
def __init__( | ||
self, | ||
dim, | ||
depth, | ||
d_state: int, | ||
causal: bool = True, | ||
dropout: float = 0.1, | ||
shared_qk: bool = True, | ||
exact_window_size: bool = False, | ||
heads: int = None, | ||
dim_head: int = None, | ||
m_expand: int = 4, | ||
num_experts: int = 4, | ||
*args, | ||
**kwargs, | ||
): | ||
super().__init__() | ||
self.dim = dim | ||
self.depth = depth | ||
self.d_state = d_state | ||
self.causal = causal | ||
self.shared_qk = shared_qk | ||
self.exact_window_size = exact_window_size | ||
self.heads = heads | ||
self.dim_head = dim_head | ||
self.m_expand = m_expand | ||
self.num_experts = num_experts | ||
|
||
self.layers = nn.ModuleList([]) | ||
self.ffn_layers = nn.ModuleList([]) | ||
self.hidden_dim = dim * m_expand | ||
|
||
for _ in range(depth): | ||
self.layers.append( | ||
MambaBlock( | ||
dim=dim, | ||
depth=depth, | ||
d_state=d_state, | ||
expand=m_expand, | ||
*args, | ||
**kwargs, | ||
) | ||
) | ||
|
||
self.ffn_layers.append( | ||
SwitchMoE( | ||
dim=dim, | ||
hidden_dim=self.hidden_dim, | ||
output_dim=dim, | ||
num_experts=num_experts, | ||
mult=m_expand, | ||
) | ||
) | ||
|
||
def forward(self, x): | ||
for attn, moe in zip(self.layers, self.ffn_layers): | ||
x, _ = moe(x) | ||
x = attn(x, x, x) + x | ||
x, _ = moe(x) | ||
return x | ||
|
||
x = torch.randn(1, 10, 512) | ||
model = MoEMambaBlock( | ||
dim=512, | ||
depth=6, | ||
d_state=128, | ||
expand=4, | ||
num_experts=4, | ||
) | ||
model(x).shape | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
# torch.Size([1, 10, 512]) | ||
|
||
# classes | ||
|
||
|
||
# class MoEMamba(nn.Module): | ||
# def __init__( | ||
# self, | ||
# num_tokens: int, | ||
# dim: int, | ||
# depth: int, | ||
# d_state: int, | ||
# causal: bool = True, | ||
# dropout: float = 0.1, | ||
# shared_qk: bool = True, | ||
# exact_window_size: bool = False, | ||
# heads: int = None, | ||
# dim_head: int = None, | ||
# m_expand: int = 4, | ||
# num_experts: int = 4, | ||
# *args, | ||
# **kwargs, | ||
# ): | ||
# super().__init__() | ||
# self.emb = nn.Embedding(num_tokens, dim) | ||
|
||
# self.transformer = MoEMambaBlock( | ||
# dim, depth, heads, dim_head, ff_mult | ||
# ) | ||
|
||
# self.to_logits = nn.Sequential( | ||
# RMSNorm(dim), nn.Linear(dim, num_tokens) | ||
# ) | ||
|
||
# def forward(self, x): | ||
# x = self.emb(x) | ||
# x = self.transformer(x) | ||
# return self.to_logits(x) |