Skip to content

Commit

Permalink
Merge branch 'master' into alias-command-plurality
Browse files Browse the repository at this point in the history
  • Loading branch information
connor-mccarthy committed Apr 18, 2022
2 parents 060ac18 + a85dc4f commit 5ddb6b5
Show file tree
Hide file tree
Showing 19 changed files with 4,925 additions and 50 deletions.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
"""Util functions for Vertex Forecasting pipelines."""

import os
import pathlib
from typing import Any, Dict, List, Optional, Tuple, Union


def get_bqml_arima_train_pipeline_and_parameters(
project: str,
location: str,
time_column: str,
time_series_identifier_column: str,
target_column_name: str,
forecast_horizon: int,
data_granularity_unit: str,
data_source: Dict[str, Dict[str, Union[List[str], str]]],
split_spec: Optional[Dict[str, Dict[str, Union[str, float]]]] = None,
bigquery_destination_uri: str = '',
override_destination: bool = False,
max_order: int = 5,
) -> Tuple[str, Dict[str, Any]]:
"""Get the BQML ARIMA_PLUS training pipeline.
Args:
project: The GCP project that runs the pipeline components.
location: The GCP region that runs the pipeline components.
time_column: Name of the column that identifies time order in the time
series.
time_series_identifier_column: Name of the column that identifies the time
series.
target_column_name: Name of the column that the model is to predict values
for.
forecast_horizon: The number of time periods into the future for which
forecasts will be created. Future periods start after the latest timestamp
for each time series.
data_granularity_unit: The data granularity unit. Accepted values are:
minute, hour, day, week, month, year.
data_source: Serialized JSON with URI of BigQuery table containing training
data. This table should be provided in a JSON object that looks like:
{
"big_query_data_source": {
"big_query_table_path": "bq://[PROJECT].[DATASET].[TABLE]"
}
}
or
{
"csv_data_source": {
"csv_filenames": [ [GCS_PATHS] ],
}
split_spec: Serialized JSON with name of the column containing the dataset
each row belongs to. Valid values in this column are: TRAIN, VALIDATE, and
TEST. This column should be provided in a JSON object that looks like:
{"predefined_split": {"key": "[SPLIT_COLUMN]"}}
or
{
'fraction_split': {
'training_fraction': 0.8,
'validation_fraction': 0.1,
'test_fraction': 0.1,
},
}
bigquery_destination_uri: URI of the desired destination dataset. If not
specified, resources will be created under a new dataset in the project.
Unlike in Vertex Forecasting, all resources will be given hardcoded names
under this dataset, and the model artifact will also be exported here.
override_destination: Whether to override a
model or table if it already exists. If False and the resource exists, the
training job will fail.
max_order: Integer between 1 and 5 representing the size of the parameter
search space for ARIMA_PLUS. 5 would result in the highest accuracy model,
but also the longest training runtime.
Returns:
Tuple of pipeline_definiton_path and parameter_values.
"""
if split_spec is None:
split_spec = {
'fraction_split': {
'training_fraction': 0.8,
'validation_fraction': 0.1,
'test_fraction': 0.1,
},
}
parameter_values = {
'project': project,
'location': location,
'time_column': time_column,
'time_series_identifier_column': time_series_identifier_column,
'target_column_name': target_column_name,
'forecast_horizon': forecast_horizon,
'data_granularity_unit': data_granularity_unit,
'data_source': data_source,
'split_spec': split_spec,
'bigquery_destination_uri': bigquery_destination_uri,
'override_destination': override_destination,
'max_order': max_order,
}
pipeline_definition_path = os.path.join(
pathlib.Path(__file__).parent.resolve(),
'bqml_arima_train_pipeline.json')
return pipeline_definition_path, parameter_values


def get_bqml_arima_predict_pipeline_and_parameters(
project: str,
location: str,
model_name: str,
data_source: Dict[str, Dict[str, Union[List[str], str]]],
bigquery_destination_uri: str = '',
generate_explanation: bool = False,
) -> Tuple[str, Dict[str, Any]]:
"""Get the BQML ARIMA_PLUS prediction pipeline.
Args:
project: The GCP project that runs the pipeline components.
location: The GCP region that runs the pipeline components.
model_name: ARIMA_PLUS BQML model URI.
data_source: Serialized JSON with URI of BigQuery table containing input
data. This table should be provided in a JSON object that looks like:
{
"big_query_data_source": {
"big_query_table_path": "bq://[PROJECT].[DATASET].[TABLE]"
}
}
or
{
"csv_data_source": {
"csv_filenames": [ [GCS_PATHS] ],
}
bigquery_destination_uri: URI of the desired destination dataset. If not
specified, a resource will be created under a new dataset in the project.
generate_explanation: Generate explanation along with the batch prediction
results. This will cause the batch prediction output to include
explanations.
Returns:
Tuple of pipeline_definiton_path and parameter_values.
"""
parameter_values = {
'project': project,
'location': location,
'model_name': model_name,
'data_source': data_source,
'bigquery_destination_uri': bigquery_destination_uri,
'generate_explanation': generate_explanation,
}
pipeline_definition_path = os.path.join(
pathlib.Path(__file__).parent.resolve(),
'bqml_arima_predict_pipeline.json')
return pipeline_definition_path, parameter_values
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,12 @@ description: |
weight_column (Optional[str]): The weight column name.
enable_profiler (Optional[bool]): Enables profiling and saves a trace during evaluation.
seed (Optional[int]): Seed to be used for this run.
eval_steps (Optional[int]): Number of steps (batches) to run evaluation for. If not
specified or negative, it means run evaluation on the whole validation
dataset. If set to 0, it means run evaluation for a fixed number of
samples.
eval_frequency_secs (Optional[int]): Frequency at which evaluation and checkpointing will
take place.
study_spec_metrics (list[dict]):
Required. List of dictionaries representing metrics to optimize.
The dictionary contains the metric_id, which is reported by the training
Expand Down Expand Up @@ -78,6 +84,8 @@ inputs:
- { name: weight_column, type: String, default: "" }
- { name: enable_profiler, type: Boolean, default: "false" }
- { name: seed, type: Integer, default: 1 }
- { name: eval_steps, type: Integer, default: 0 }
- { name: eval_frequency_secs, type: Integer, default: 600 }
- { name: study_spec_metrics, type: JsonArray }
- { name: study_spec_parameters, type: JsonArray }
- { name: max_trial_count, type: Integer }
Expand Down Expand Up @@ -181,5 +189,9 @@ implementation:
{ inputValue: enable_profiler },
'", "--seed=',
{ inputValue: seed },
'", "--eval_steps=',
{ inputValue: eval_steps },
'", "--eval_frequency_secs=',
{ inputValue: eval_frequency_secs },
'"]}}]}}',
]]
Loading

0 comments on commit 5ddb6b5

Please sign in to comment.