-
Notifications
You must be signed in to change notification settings - Fork 1.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
PiperOrigin-RevId: 574969883
- Loading branch information
Googler
committed
Oct 19, 2023
1 parent
8d00d0e
commit 0e240db
Showing
2 changed files
with
229 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
201 changes: 201 additions & 0 deletions
201
...gle-cloud/google_cloud_pipeline_components/_implementation/llm/preprocess_chat_dataset.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,201 @@ | ||
# Copyright 2023 The Kubeflow Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
"""KFP Component the preprocesses chat dataset before tokenization.""" | ||
|
||
from google_cloud_pipeline_components import _image | ||
from kfp import dsl | ||
|
||
|
||
@dsl.component(base_image=_image.GCPC_IMAGE_TAG, install_kfp_package=False) | ||
def preprocess_chat_dataset( | ||
large_model_reference: str, | ||
input_dataset_uri: str, | ||
processed_dataset: dsl.OutputPath(dsl.Artifact), # pytype: disable=invalid-annotation | ||
processed_dataset_uri: dsl.OutputPath(str), # pytype: disable=invalid-annotation | ||
default_context: str = '', | ||
allow_local_files: bool = False, | ||
): # pylint: disable=g-doc-args | ||
# fmt: off | ||
"""Preprocesses datasets before tokenization. | ||
For text datasets, this is a no-op. | ||
Args: | ||
large_model_reference: Name of the base model. Supported values are `text-bison@001`, `chat-bison@001`, `t5-small`, `t5-large`, `t5-xl` and `t5-xxl`. `text-bison@001`, `chat-bison@001` and `t5-small` are supported in ``us-central1` and `europe-west4`. `t5-large`, `t5-xl` and `t5-xxl` are only supported in `europe-west4`. | ||
input_dataset_uri: Path to an unprocessed JSONL dataset. | ||
default_context: Default context to apply to each example if a chat model is specified. | ||
allow_local_files: Whether input URIs can specify local file paths. | ||
Returns: | ||
processed_dataset: Processed chat dataset. Each example will contain fields `input_text` and `output_text`. | ||
processed_dataset_uri: String pattern that can be used to find the processed dataset in downstream components. | ||
""" | ||
# fmt: on | ||
# pylint: disable=g-import-not-at-top | ||
import json | ||
import os | ||
from typing import List, Mapping, Any | ||
import apache_beam as beam | ||
# pylint: enable=g-import-not-at-top | ||
|
||
# [ Define helper methods and classes for preprocessing | ||
# pylint: disable=invalid-name | ||
INPUT_TEXT_KEY = 'input_text' | ||
OUTPUT_TEXT_KEY = 'output_text' | ||
CONTEXT_KEY = 'context' | ||
MESSAGES_KEY = 'messages' | ||
AUTHOR_KEY = 'author' | ||
CONTENT_KEY = 'content' | ||
GLOBAL_PREFIX = 'Only answer after [assistant] and never reply as [user]:' | ||
CONTEXT_PREFIX = '[SYSTEM]:' | ||
AUTHOR_USER = 'user' | ||
AUTHOR_ASSISTANT = 'assistant' | ||
USER_PREFIX = '[user]:' | ||
ASSISTANT_PREFIX = '[assistant]:' | ||
AUTHOR_ENCODING_PREFIX_MAPPING = { | ||
AUTHOR_USER: USER_PREFIX, | ||
AUTHOR_ASSISTANT: ASSISTANT_PREFIX, | ||
} | ||
VALID_AUTHORS = {AUTHOR_USER, AUTHOR_ASSISTANT} | ||
# pylint: enable=invalid-name | ||
|
||
def get_gcs_path(input_path: str, allow_local_files: bool) -> str: | ||
"""Gets the /gcs/ path for a given URI.""" | ||
if input_path.startswith('gs://'): | ||
return input_path.replace('gs://', '/gcs/', 1) | ||
elif input_path.startswith('/gcs/') or allow_local_files: | ||
return input_path | ||
else: | ||
raise ValueError( | ||
f'Invalid Cloud storage URI {input_path}. ' | ||
'Must start with `gs://` or `/gcs/`.' | ||
) | ||
|
||
def get_gs_path(input_path: str, allow_local_files: bool) -> str: | ||
"""Gets the gs:// path for a given URI.""" | ||
if input_path.startswith('/gcs/'): | ||
return input_path.replace('/gcs/', 'gs://', 1) | ||
elif input_path.startswith('gs://') or allow_local_files: | ||
return input_path | ||
else: | ||
raise ValueError( | ||
f'Invalid Cloud storage URI {input_path}. ' | ||
'Must start with `gs://` or `/gcs/`.' | ||
) | ||
|
||
class JsonCoder(beam.coders.Coder): | ||
"""A coder that encodes/decodes lines as JSON strings.""" | ||
|
||
def encode(self, x): | ||
return json.dumps(x).encode('utf-8') | ||
|
||
def decode(self, x): | ||
return json.loads(x) | ||
|
||
class ChatDatasetProcessor(beam.DoFn): | ||
"""Converts chat data from input format to the format expected by the model.""" | ||
|
||
def __init__(self, default_context: str = ''): | ||
self._default_context = default_context | ||
|
||
def _get_messages_or_fail( | ||
self, element: Mapping[str, Any] | ||
) -> List[Mapping[str, str]]: | ||
messages = element.get(MESSAGES_KEY) | ||
if not messages or len(messages) <= 1: | ||
raise ValueError( | ||
'Chat messages length should be greater than 1. Please include a ' | ||
f'`messages` field in each line of dataset: {element}.' | ||
) | ||
return messages | ||
|
||
def _get_author_or_fail(self, message: Mapping[str, str]) -> str: | ||
author = message.get(AUTHOR_KEY) | ||
if not author or author not in VALID_AUTHORS: | ||
raise ValueError( | ||
'The `author` of each message needs to be from one of' | ||
f' {VALID_AUTHORS}. Got author = {author}.' | ||
) | ||
return author | ||
|
||
def _get_content_or_fail(self, message: Mapping[str, str]) -> str: | ||
content = message.get(CONTENT_KEY) | ||
if not content: | ||
raise ValueError( | ||
'The `content` of each message needs to be non-empty. ' | ||
f'Invalid message: {message}' | ||
) | ||
return content | ||
|
||
def process(self, element): | ||
context = element.get(CONTEXT_KEY, self._default_context) | ||
messages = self._get_messages_or_fail(element) | ||
|
||
per_conversation_context = ( | ||
f'{CONTEXT_PREFIX}{context}\n\n' if context else '' | ||
) | ||
message_prefix = f'{GLOBAL_PREFIX}\n{per_conversation_context}' | ||
message_history = [] | ||
for message in messages: | ||
author = self._get_author_or_fail(message) | ||
content = self._get_content_or_fail(message) | ||
if author == AUTHOR_ASSISTANT: | ||
joined_messages = '\n'.join(message_history) | ||
input_text = f'{message_prefix}{joined_messages}\n{ASSISTANT_PREFIX}' | ||
yield {INPUT_TEXT_KEY: input_text, OUTPUT_TEXT_KEY: content} | ||
message_history.append( | ||
f'{AUTHOR_ENCODING_PREFIX_MAPPING[author]}{content}' | ||
) | ||
|
||
# ] | ||
|
||
processed_dataset_uri = get_gcs_path(processed_dataset_uri, allow_local_files) | ||
|
||
# Reuse the input dataset if no preprocessing is needed. | ||
if large_model_reference.lower() != 'chat-bison@001': | ||
with open(processed_dataset_uri, 'w') as f: | ||
f.write(input_dataset_uri) | ||
return | ||
|
||
# Provide gs:// paths for datasets processed by Beam. | ||
input_dataset_uri = get_gs_path(input_dataset_uri, allow_local_files) | ||
processed_dataset = get_gs_path(processed_dataset, allow_local_files) | ||
os.makedirs(processed_dataset, exist_ok=True) | ||
processed_dataset_prefix = os.path.join(processed_dataset, 'shard') | ||
|
||
pipeline_options = ( | ||
beam.options.pipeline_options.PipelineOptions.from_dictionary({ | ||
'runner': 'DirectRunner', | ||
}) | ||
) | ||
with beam.Pipeline(options=pipeline_options) as pipeline: | ||
_ = ( | ||
pipeline | ||
| 'Read JSON from input dataset' | ||
>> beam.io.ReadFromText(input_dataset_uri, coder=JsonCoder()) | ||
| 'Process chat dataset' | ||
>> beam.ParDo(ChatDatasetProcessor(default_context=default_context)) | ||
| 'Write processed JSON to output file' | ||
>> beam.io.WriteToText( | ||
file_path_prefix=processed_dataset_prefix, | ||
file_name_suffix='.jsonl', | ||
coder=JsonCoder(), | ||
) | ||
) | ||
|
||
# Write file pattern that the tokenizer can use to find all processed files. | ||
with open(processed_dataset_uri, 'w') as f: | ||
processed_dataset_pattern = os.path.join(processed_dataset, '*.jsonl') | ||
f.write(processed_dataset_pattern) |