Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Training Container with Model Constructor for cifar10 #345

Merged
merged 5 commits into from
Feb 15, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 32 additions & 0 deletions examples/NAS-training-containers/cifar10/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
ARG cuda_version=9.0
ARG cudnn_version=7
FROM nvidia/cuda:${cuda_version}-cudnn${cudnn_version}-devel

# Install system packages
RUN apt-get update && apt-get install -y software-properties-common && \
add-apt-repository ppa:deadsnakes/ppa && \
apt-get update && \
apt-get install -y --no-install-recommends \
bzip2 \
g++ \
git \
graphviz \
libgl1-mesa-glx \
libhdf5-dev \
openmpi-bin \
python3.5 \
python3-pip \
python3-setuptools \
python3-dev \
wget && \
rm -rf /var/lib/apt/lists/*


ADD . /app
WORKDIR /app

RUN pip3 install --upgrade pip
RUN pip3 install --no-cache-dir -r requirements.txt
ENV PYTHONPATH /app

ENTRYPOINT ["python3.5", "-u", "RunTrial.py"]
63 changes: 63 additions & 0 deletions examples/NAS-training-containers/cifar10/ModelConstructor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
import numpy as np
from keras.models import Model
from keras import backend as K
import json
from keras.layers import Input, Conv2D, ZeroPadding2D, concatenate, MaxPooling2D, \
AveragePooling2D, Dense, Activation, BatchNormalization, GlobalAveragePooling2D, Dropout
from op_library import concat, conv, reduction


class ModelConstructor(object):
def __init__(self, arc_json, nn_json):
self.arch = json.loads(arc_json)
nn_config = json.loads(nn_json)
self.num_layers = nn_config['num_layers']
self.input_size = nn_config['input_size']
self.output_size = nn_config['output_size'][-1]
self.embedding = nn_config['embedding']

def build_model(self):
# a list of the data all layers
all_layers = [0 for _ in range(self.num_layers + 1)]
# a list of all the dimensions of all layers
all_dims = [0 for _ in range(self.num_layers + 1)]

# ================= Stacking layers =================
# Input Layer. Layer 0
input_layer = Input(shape=self.input_size)
all_layers[0] = input_layer

# Intermediate Layers. Starting from layer 1.
for l in range(1, self.num_layers + 1):
input_layers = list()
opt = self.arch[l - 1][0]
opt_config = self.embedding[str(opt)]
skip = self.arch[l - 1][1:l+1]

# set up the connection to the previous layer first
input_layers.append(all_layers[l - 1])

# then add skip connections
for i in range(l - 1):
if l > 1 and skip[i] == 1:
input_layers.append(all_layers[i])

layer_input = concat(input_layers)
if opt_config['opt_type'] == 'convolution':
layer_output = conv(layer_input, opt_config)
elif opt_config['opt_type'] == 'reduction':
layer_output = reduction(layer_input, opt_config)

all_layers[l] = layer_output

# Final Layer
# Global Average Pooling, then Fully connected with softmax.
avgpooled = GlobalAveragePooling2D()(all_layers[self.num_layers])
dropped = Dropout(0.4)(avgpooled)
logits = Dense(units=self.output_size,
activation='softmax')(dropped)

# Encapsulate the model
self.model = Model(inputs=input_layer, outputs=logits)

return self.model
59 changes: 59 additions & 0 deletions examples/NAS-training-containers/cifar10/RunTrial.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import keras
import numpy as np
from keras.datasets import cifar10
from ModelConstructor import ModelConstructor
from keras.utils import to_categorical
import argparse
import time

if __name__ == "__main__":
parser = argparse.ArgumentParser(description='TrainingContainer')
parser.add_argument('--architecture', type=str, default="", metavar='N',
help='architecture of the neural network')
parser.add_argument('--nn_config', type=str, default="", metavar='N',
help='configurations and search space embeddings')
parser.add_argument('--num_epochs', type=int, default=10, metavar='N',
help='number of epoches that each child will be trained')
args = parser.parse_args()

arch = args.architecture.replace("\'", "\"")
print(">>> arch received by trial")
print(arch)

nn_config = args.nn_config.replace("\'", "\"")
print(">>> nn_config received by trial")
print(nn_config)

num_epochs = args.num_epochs
print(">>> num_epochs received by trial")
print(num_epochs)

print(">>> Constructing Model...")
constructor = ModelConstructor(arch, nn_config)
test_model = constructor.build_model()
print(">>> Model Constructed Successfully")

test_model.summary()
test_model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(lr=1e-3, decay=1e-4),
metrics=['accuracy'])

(x_train, y_train), (x_test, y_test) = cifar10.load_data()
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)

print(">>> Data Loaded. Training start.")
for e in range(num_epochs):
print("\nTotal Epoch {}/{}".format(e+1, num_epochs))
history = test_model.fit(x=x_train, y=y_train,
shuffle=True, batch_size=128,
epochs=1, verbose=1,
validation_data=(x_test, y_test))
print("Training-Accuracy={}".format(history.history['acc'][-1]))
print("Training-Loss={}".format(history.history['loss'][-1]))
print("Validation-Accuracy={}".format(history.history['val_acc'][-1]))
print("Validation-Loss={}".format(history.history['val_loss'][-1]))
83 changes: 83 additions & 0 deletions examples/NAS-training-containers/cifar10/op_library.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,83 @@
import numpy as np
from keras import backend as K
from keras.layers import Input, Conv2D, ZeroPadding2D, concatenate, MaxPooling2D, \
AveragePooling2D, Dense, Activation, BatchNormalization, GlobalAveragePooling2D


def concat(inputs):
n = len(inputs)
if n == 1:
return inputs[0]

total_dim = list()
for x in inputs:
total_dim.append(K.int_shape(x))
total_dim = np.asarray(total_dim)
max_dim = max(total_dim[:, 1])

padded_input = [0 for _ in range(n)]

for i in range(n):
if total_dim[i][1] < max_dim:
diff = max_dim - total_dim[i][1]
half_diff = int(diff / 2)
if diff % 2 == 0:
padded_input[i] = ZeroPadding2D(padding=(half_diff, half_diff))(inputs[i])
else:
padded_input[i] = ZeroPadding2D(padding=((half_diff, half_diff + 1),
(half_diff, half_diff + 1)))(inputs[i])
else:
padded_input[i] = inputs[i]

result = concatenate(inputs=padded_input, axis=-1)
return result


def conv(x, config):
parameters = {
"num_filter": 64,
"filter_size": 3,
"stride": 1,
}
for k in parameters.keys():
if k in config:
parameters[k] = int(config[k])

activated = Activation('relu')(x)

conved = Conv2D(
filters=parameters['num_filter'],
kernel_size=parameters['filter_size'],
strides=parameters['stride'],
padding='same')(activated)

result = BatchNormalization()(conved)

return result


def reduction(x, config):
parameters = {
'reduction_type': "max_pooling",
'pool_size': 2,
'stride': None,
}
if 'reduction_type' in config:
parameters['reduction_type'] = config['reduction_type']
if 'pool_size' in config:
parameters['pool_size'] = int(config['pool_size'])
if 'stride' in config:
parameters['stride'] = int(config['stride'])

if parameters['reduction_type'] == 'max_pooling':
result = MaxPooling2D(
pool_size=parameters['pool_size'],
strides=parameters['stride']
)(x)
elif parameters['reduction_type'] == 'avg_pooling':
result = AveragePooling2D(
pool_size=parameters['pool_size'],
strides=parameters['stride']
)(x)

return result
2 changes: 2 additions & 0 deletions examples/NAS-training-containers/cifar10/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
tensorflow-gpu
keras