forked from apache/arrow
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
234 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -88,3 +88,4 @@ pub mod expressions; | |
pub mod hash_aggregate; | ||
pub mod merge; | ||
pub mod projection; | ||
pub mod selection; |
184 changes: 184 additions & 0 deletions
184
rust/datafusion/src/execution/physical_plan/selection.rs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,184 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
//! Defines the selection execution plan. A selection filters rows based on a predicate | ||
use std::sync::{Arc, Mutex}; | ||
|
||
use crate::error::{ExecutionError, Result}; | ||
use crate::execution::physical_plan::{ | ||
BatchIterator, ExecutionPlan, Partition, PhysicalExpr, | ||
}; | ||
use arrow::array::BooleanArray; | ||
use arrow::compute::filter; | ||
use arrow::datatypes::Schema; | ||
use arrow::record_batch::RecordBatch; | ||
|
||
/// Execution plan for a Selection | ||
pub struct SelectionExec { | ||
/// The selection predicate expression | ||
expr: Arc<dyn PhysicalExpr>, | ||
/// The input plan | ||
input: Arc<dyn ExecutionPlan>, | ||
} | ||
|
||
impl SelectionExec { | ||
/// Create a selection on an input | ||
pub fn try_new( | ||
expr: Arc<dyn PhysicalExpr>, | ||
input: Arc<dyn ExecutionPlan>, | ||
) -> Result<Self> { | ||
Ok(Self { | ||
expr: expr.clone(), | ||
input: input.clone(), | ||
}) | ||
} | ||
} | ||
|
||
impl ExecutionPlan for SelectionExec { | ||
/// Get the schema for this execution plan | ||
fn schema(&self) -> Arc<Schema> { | ||
// The selection operator does not make any changes to the schema of its input | ||
self.input.schema() | ||
} | ||
|
||
/// Get the partitions for this execution plan | ||
fn partitions(&self) -> Result<Vec<Arc<dyn Partition>>> { | ||
let partitions: Vec<Arc<dyn Partition>> = self | ||
.input | ||
.partitions()? | ||
.iter() | ||
.map(|p| { | ||
let expr = self.expr.clone(); | ||
let partition: Arc<dyn Partition> = Arc::new(SelectionPartition { | ||
schema: self.input.schema(), | ||
expr, | ||
input: p.clone() as Arc<dyn Partition>, | ||
}); | ||
|
||
partition | ||
}) | ||
.collect(); | ||
|
||
Ok(partitions) | ||
} | ||
} | ||
|
||
/// Represents a single partition of a Selection execution plan | ||
struct SelectionPartition { | ||
schema: Arc<Schema>, | ||
expr: Arc<dyn PhysicalExpr>, | ||
input: Arc<dyn Partition>, | ||
} | ||
|
||
impl Partition for SelectionPartition { | ||
/// Execute the Selection | ||
fn execute(&self) -> Result<Arc<Mutex<dyn BatchIterator>>> { | ||
Ok(Arc::new(Mutex::new(SelectionIterator { | ||
schema: self.schema.clone(), | ||
expr: self.expr.clone(), | ||
input: self.input.execute()?, | ||
}))) | ||
} | ||
} | ||
|
||
/// Selection iterator | ||
struct SelectionIterator { | ||
schema: Arc<Schema>, | ||
expr: Arc<dyn PhysicalExpr>, | ||
input: Arc<Mutex<dyn BatchIterator>>, | ||
} | ||
|
||
impl BatchIterator for SelectionIterator { | ||
/// Get the schema | ||
fn schema(&self) -> Arc<Schema> { | ||
self.schema.clone() | ||
} | ||
|
||
/// Get the next batch | ||
fn next(&mut self) -> Result<Option<RecordBatch>> { | ||
let mut input = self.input.lock().unwrap(); | ||
match input.next()? { | ||
Some(batch) => { | ||
// evaluate the selection predicate to get a boolean array | ||
let predicate_result = self.expr.evaluate(&batch)?; | ||
|
||
if let Some(f) = predicate_result.as_any().downcast_ref::<BooleanArray>() | ||
{ | ||
// filter each array | ||
let mut filtered_arrays = vec![]; | ||
for i in 0..batch.num_columns() { | ||
let array = batch.column(i); | ||
let filtered_array = filter(array.as_ref(), f)?; | ||
filtered_arrays.push(filtered_array); | ||
} | ||
Ok(Some(RecordBatch::try_new( | ||
batch.schema().clone(), | ||
filtered_arrays, | ||
)?)) | ||
} else { | ||
Err(ExecutionError::InternalError( | ||
"Predicate evaluated to non-boolean value".to_string(), | ||
)) | ||
} | ||
} | ||
None => Ok(None), | ||
} | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod tests { | ||
|
||
use super::*; | ||
use crate::execution::physical_plan::csv::CsvExec; | ||
use crate::execution::physical_plan::expressions::*; | ||
use crate::execution::physical_plan::ExecutionPlan; | ||
use crate::logicalplan::{Operator, ScalarValue}; | ||
use crate::test; | ||
use std::iter::Iterator; | ||
|
||
#[test] | ||
fn simple_predicate() -> Result<()> { | ||
let schema = test::aggr_test_schema(); | ||
|
||
let partitions = 4; | ||
let path = test::create_partitioned_csv("aggregate_test_100.csv", partitions)?; | ||
|
||
let csv = CsvExec::try_new(&path, schema, true, None, 1024)?; | ||
|
||
let predicate: Arc<dyn PhysicalExpr> = binary( | ||
binary(col(1), Operator::Gt, lit(ScalarValue::UInt32(1))), | ||
Operator::And, | ||
binary(col(1), Operator::Lt, lit(ScalarValue::UInt32(4))), | ||
); | ||
|
||
let selection: Arc<dyn ExecutionPlan> = | ||
Arc::new(SelectionExec::try_new(predicate, Arc::new(csv))?); | ||
|
||
let results = test::execute(selection.as_ref())?; | ||
|
||
results | ||
.iter() | ||
.for_each(|batch| assert_eq!(13, batch.num_columns())); | ||
let row_count: usize = results.iter().map(|batch| batch.num_rows()).sum(); | ||
assert_eq!(41, row_count); | ||
|
||
Ok(()) | ||
} | ||
|
||
} |