Skip to content

Commit

Permalink
Update economic-outcomes-andriy.R
Browse files Browse the repository at this point in the history
  • Loading branch information
andkov committed Aug 19, 2022
1 parent 056adac commit 4914d50
Showing 1 changed file with 123 additions and 10 deletions.
133 changes: 123 additions & 10 deletions analysis/economic-outcomes/economic-outcomes-andriy.R
Original file line number Diff line number Diff line change
Expand Up @@ -93,6 +93,47 @@ ds0_long %>% glimpse()

# ---- table-1 -----------------------------------------------------------------
# ds_economics %>% filter(hromada_code == "UA80000000000093317") %>% View()
ds_time %>% glimpse()
# d0 <- ds_time %>% filter(hromada_code %in% c("UA14160270000099007","UA18080210000038722","UA07020050000082369"))
# d0 %>% print_all()
d0 <- ds_time

d1 <-
d0 %>%
filter(date < as.Date("2020-01-01")) %>%
group_by(hromada_code) %>%
mutate(
max_date = max(date, na.rm =T)==date
) %>%
ungroup() %>%
filter(max_date)

d2 <-
d0 %>%
group_by(hromada_code) %>%
mutate(
max_date = max(date, na.rm =T)==date
) %>%
ungroup() %>%
filter(max_date)
d2
d1

d_change <-
d2 %>% select(date, rada_code, hromada_code) %>%
left_join(
d1 %>% select(hromada_code_20 = hromada_code, rada_code)
,by = "rada_code"
) %>%
group_by(hromada_code) %>%
mutate(
changed_since_2020 = sum(is.na(hromada_code_20),na.rm=T)>0L
) %>%
ungroup() %>%
distinct(hromada_code, changed_since_2020)

d_change %>% print_all()


# ---- graph-1 -----------------------------------------------------------------
ds0_long %>% distinct(metric)
Expand All @@ -116,17 +157,17 @@ d <-
,tax_revenue_2021_kuah = tax_revenue_2021/1000
) %>%
left_join(ds_admin %>% select(!starts_with("settlement")) %>% distinct() ) %>%
filter(!is.na(hromada_name))
filter(!is.na(hromada_name)) %>%
left_join(d_change)

d %>% glimpse()

d <-
ds0_wide %>%
select(hromada_code, hromada_type3, tot, time, tax_revenue)
d
g <-
d %>%
filter(hromada_type3 !="urban") %>%
# filter(changed_since_2020) %>%
filter(!changed_since_2020) %>%
filter(!tax_revenue_2021_kuah==max(tax_revenue_2021_kuah)) %>%
ggplot(
aes(
x=tax_revenue_2020_kuah
Expand All @@ -139,14 +180,23 @@ g <-
# geom_point(shape = 21, fill = NA)+
geom_point()+
scale_shape_manual(values = c("rural"=1, "rural+"=3))+
facet_wrap(facets = "oblast_name_display", scales = "free")+
scale_y_continuous(labels = scales::comma_format())+
scale_x_continuous(labels = scales::comma_format())+
# facet_wrap(facets = "oblast_name_display", scales = "free")+
facet_wrap(facets = "oblast_name_display", scales = "fixed")+
scale_y_continuous(
labels = scales::comma_format()
,limits = c(0,505)
)+
scale_x_continuous(
labels = scales::comma_format()
,limits = c(0, 505)
)+
labs(
title = "Tax Revenue"
# title = "Tax Revenue among hromadas that changed composition since 2020-01-01"
title = "Tax Revenue among hromadas that DID NOT changed composition sicne 2020-01-01"
)

g %>% quick_save("1-outcome-scatterplot", w=12, h = 9)
# g %>% quick_save("1-outcome-scatterplot-changed", w=12, h = 9)
g %>% quick_save("1-outcome-scatterplot-same", w=12, h = 9)
# ---- graph-2 -----------------------------------------------------------------
# distribution of tax revenue across regions

Expand Down Expand Up @@ -187,6 +237,69 @@ g %>% quick_save("2-regions-tax", w=12, h=6)

# ---- graph-3 -----------------------------------------------------------------

d_boxplot <-
ds_economics %>%
filter(metric %in% c("tax_revenue")) %>%
filter(!is.na(value)) %>%
mutate(
metric = paste0(metric,"_",time)
) %>%
select(-c("time")) %>%
pivot_wider(
names_from = "metric"
,values_from = "value"
) %>%
# left_join(
# ds0_wide %>% select(hromada_code, hromada_type2, hromada_type3, tot)
# ) %>%
mutate(
tax_revenue_2020_kuah = tax_revenue_2020/1000
,tax_revenue_2021_kuah = tax_revenue_2021/1000
) %>%
# glimpse()
# left_join(ds_admin %>% select(!starts_with("settlement")) %>% distinct() ) %>%
# filter(!is.na(hromada_name)) %>%
left_join(d_change) %>% #glimpse()
# filter(time %in% c(2020:2021)) %>%
mutate(
delta = tax_revenue_2021_kuah - tax_revenue_2020_kuah
,delta_prop = delta/tax_revenue_2020_kuah
,delta_pct = delta_prop %>% scales::percent(accuracy = .01)
) %>%
left_join(
ds0_wide %>% distinct(hromada_code, hromada_type2, hromada_type3, tot)
) %>%
left_join(ds_admin %>% distinct(hromada_code, region_ua))

d_boxplot %>% glimpse()

g3 <-
d_boxplot %>%
{
ggplot(
.
,aes(
x = changed_since_2020
,y = delta_prop
# , color = tot
# , fill = tot
)
)+
geom_boxplot()+
geom_jitter(
shape = 21, alpha = .4
)+
# facet_wrap(facets = "hromada_type3")
facet_grid(hromada_type3 ~ region_ua, scales = "fixed")
}
g3
g3 %>% quick_save("3-growth-and-change", h=7, w=14)
# conclusion
# we observe that those hromadas thave have changed their composition since 2020-01-01
# appear to report higher growth when compared to 2021
# we think this is an artifact of the metric: the contribution rada which didn't belong to hromada
# before 2020-08-16 might have been discounted in the final count of the tax contribution for that hromada

# ---- save-to-disk ------------------------------------------------------------

# ---- publish ------------------------------------------------------------
Expand Down

0 comments on commit 4914d50

Please sign in to comment.