This starter kit is designed to get you up and running with a bunch of awesome new front-end technologies, all on top of a configurable, feature-rich webpack build system that's already setup to provide hot reloading, CSS modules with Sass support, unit testing, code coverage reports, bundle splitting, and a whole lot more.
The primary goal of this project is to remain as unopinionated as possible. Its purpose is not to dictate your project structure or to demonstrate a complete sample application, but to provide a set of tools intended to make front-end development robust, easy, and, most importantly, fun. Check out the full feature list below!
Finally, This project wouldn't be possible without the help of our many contributors, so thank you for all of your help.
- Features
- Requirements
- Getting Started
- Application Structure
- Development
- Developer Tools
- Routing
- Testing
- Deployment
- Build System
- Configuration
- Root Resolve
- Globals
- Styles
- Server
- Production Optimization
- Learning Resources
- FAQ
- Thank You
- node
^4.2.0
- npm
^3.0.0
After confirming that your development environment meets the specified requirements, you can follow these steps to get the project up and running:
$ git clone https://github.com/davezuko/react-redux-starter-kit.git
$ cd react-redux-starter-kit
$ npm install # Install project dependencies
$ npm start # Compile and launch
If everything works, you should see the following:
While developing, you will probably rely mostly on npm start
; however, there are additional scripts at your disposal:
npm run <script> |
Description |
---|---|
start |
Serves your app at localhost:3000 . HMR will be enabled in development. |
compile |
Compiles the application to disk (~/dist by default). |
dev |
Same as npm start , but enables nodemon for the server as well. |
dev:no-debug |
Same as npm run dev but disables devtool instrumentation. |
test |
Runs unit tests with Karma and generates a coverage report. |
test:dev |
Runs Karma and watches for changes to re-run tests; does not generate coverage reports. |
deploy |
Runs linter, tests, and then, on success, compiles your application to disk. |
deploy:dev |
Same as deploy but overrides NODE_ENV to "development". |
deploy:prod |
Same as deploy but overrides NODE_ENV to "production". |
lint |
Lint all .js files. |
lint:fix |
Lint and fix all .js files. Read more on this. |
The application structure presented in this boilerplate is fractal, where functionality is grouped primarily by feature rather than file type. Please note, however, that this structure is only meant to serve as a guide, it is by no means prescriptive. That said, it aims to represent generally accepted guidelines and patterns for building scalable applications. If you wish to read more about this pattern, please check out this awesome writeup by Justin Greenberg.
.
├── bin # Build/Start scripts
├── blueprints # Blueprint files for redux-cli
├── build # All build-related configuration
│ └── webpack # Environment-specific configuration files for webpack
├── config # Project configuration settings
├── server # Koa application (uses webpack middleware)
│ └── main.js # Server application entry point
├── src # Application source code
│ ├── main.js # Application bootstrap and rendering
│ ├── components # Reusable Presentational Components
│ ├── containers # Reusable Container Components
│ ├── layouts # Components that dictate major page structure
│ ├── static # Static assets (not imported anywhere in source code)
│ ├── styles # Application-wide styles (generally settings)
│ ├── store # Redux-specific pieces
│ │ ├── createStore.js # Create and instrument redux store
│ │ └── reducers.js # Reducer registry and injection
│ └── routes # Main route definitions and async split points
│ ├── index.js # Bootstrap main application routes with store
│ ├── Root.js # Wrapper component for context-aware providers
│ └── Home # Fractal route
│ ├── index.js # Route definitions and async split points
│ ├── assets # Assets required to render components
│ ├── components # Presentational React Components
│ ├── container # Connect components to actions and store
│ ├── modules # Collections of reducers/constants/actions
│ └── routes ** # Fractal sub-routes (** optional)
└── tests # Unit tests
We recommend using the Redux DevTools Chrome Extension. Using the chrome extension allows your monitors to run on a separate thread and affords better performance and functionality. It comes with several of the most popular monitors, is easy to configure, filters actions, and doesn’t require installing any packages.
However, adding the DevTools components to your project is simple. First, grab the packages from npm:
npm i --save-dev redux-devtools redux-devtools-log-monitor redux-devtools-dock-monitor
Then follow the manual integration walkthrough.
We use react-router
route definitions (<route>/index.js
) to define units of logic within our application. See the application structure section for more information.
To add a unit test, simply create a .spec.js
file anywhere in ~/tests
. Karma will pick up on these files automatically, and Mocha and Chai will be available within your test without the need to import them. If you are using redux-cli
, test files should automatically be generated when you create a component or redux module.
Coverage reports will be compiled to ~/coverage
by default. If you wish to change what reporters are used and where reports are compiled, you can do so by modifying coverage_reporters
in ~/config/index.js
.
Out of the box, this starter kit is deployable by serving the ~/dist
folder generated by npm run deploy
(make sure to specify your target NODE_ENV
as well). This project does not concern itself with the details of server-side rendering or API structure, since that demands an opinionated structure that makes it difficult to extend the starter kit. However, if you do need help with more advanced deployment strategies, here are a few tips:
If you are serving the application via a web server such as nginx, make sure to direct incoming routes to the root ~/dist/index.html
file and let react-router take care of the rest. The Koa server that comes with the starter kit is able to be extended to serve as an API or whatever else you need, but that's entirely up to you.
Heroku has nodejs buildpack
script that does the following when you deploy your app to Heroku.
- Find
packages.json
in the root directory. - Install
nodejs
andnpm
packages. - Run
npm postinstall script
- Run
npm start
Therefore, you need to modify package.json
before deploying to Heroku. Make the following changes in the scripts
section of package.json
.
...
"start": "better-npm-run start:prod",
"serve": "better-npm-run start",
"postinstall": "npm run deploy:prod",
"betterScripts": {
...
"start:prod": {
"command": "babel-node bin/server",
"env": {
"NODE_ENV": "production"
}
}
...
},
It's also important to tell Heroku to install all devDependencies
to successfully compile your app on Heroku's environment. Run the following in your terminal.
$ heroku config:set NPM_CONFIG_PRODUCTION=false
With this setup, you will install all the necessray packages, build your app, and start the webserver (e.g. koa) everytime you push your app to Heroku. Try to deploy to Heroku by running the following commands.
$ git add .
$ git commit -m 'My awesome commit'
$ git push heroku master
If you fail to deploy for an unknown reason, try this helpful comment by DonHansDampf addressing Heroku deployments.
Have more questions? Feel free to submit an issue or join the Gitter chat!
Default project configuration can be found in ~/config/index.js
. Here you'll be able to redefine your src
and dist
directories, adjust compilation settings, tweak your vendor dependencies, and more. For the most part, you should be able to make changes in here without ever having to touch the actual webpack build configuration.
If you need environment-specific overrides (useful for dynamically setting API endpoints, for example), you can edit ~/config/environments.js
and define overrides on a per-NODE_ENV basis. There are examples for both development
and production
, so use those as guidelines. Here are some common configuration options:
Key | Description |
---|---|
dir_src |
application source code base path |
dir_dist |
path to build compiled application to |
server_host |
hostname for the Koa server |
server_port |
port for the Koa server |
compiler_css_modules |
whether or not to enable CSS modules |
compiler_devtool |
what type of source-maps to generate (set to false /null to disable) |
compiler_vendor |
packages to separate into to the vendor bundle |
Webpack is configured to make use of resolve.root, which lets you import local packages as if you were traversing from the root of your ~/src
directory. Here's an example:
// current file: ~/src/views/some/nested/View.js
// What used to be this:
import SomeComponent from '../../../components/SomeComponent'
// Can now be this:
import SomeComponent from 'components/SomeComponent' // Hooray!
These are global variables available to you anywhere in your source code. If you wish to modify them, they can be found as the globals
key in ~/config/index.js
. When adding new globals, make sure you also add them to ~/.eslintrc
.
Variable | Description |
---|---|
process.env.NODE_ENV |
the active NODE_ENV when the build started |
__DEV__ |
True when process.env.NODE_ENV is development |
__PROD__ |
True when process.env.NODE_ENV is production |
__TEST__ |
True when process.env.NODE_ENV is test |
__DEBUG__ |
True when process.env.NODE_ENV is development and cli arg --no_debug is not set (npm run dev:no-debug ) |
__BASENAME__ |
history basename option |
Both .scss
and .css
file extensions are supported out of the box and are configured to use CSS Modules. After being imported, styles will be processed with PostCSS for minification and autoprefixing, and will be extracted to a .css
file during production builds.
This starter kit comes packaged with an Koa server. It's important to note that the sole purpose of this server is to provide webpack-dev-middleware
and webpack-hot-middleware
for hot module replacement. Using a custom Koa app in place of webpack-dev-server makes it easier to extend the starter kit to include functionality such as API's, universal rendering, and more -- all without bloating the base boilerplate.
Babel is configured to use babel-plugin-transform-runtime so transforms aren't inlined. Additionally, in production, we use react-optimize to further optimize your React code.
In production, webpack will extract styles to a .css
file, minify your JavaScript, and perform additional optimizations such as module deduplication.
- Starting out with react-redux-starter-kit is an introduction to the components used in this starter kit with a small example in the end.
Having trouble? Check out our FAQ or submit an issue. Please be considerate by only posting issues that are directly related to this project; questions about how to implement certain React or Redux features are both best suited for StackOverflow or their respective repositories.
This project wouldn't be possible without help from the community, so I'd like to highlight some of its biggest contributors. Thank you all for your hard work, you've made my life a lot easier and taught me a lot in the process.
- Justin Greenberg - For all of your PR's, getting us to Babel 6, and constant work improving our patterns.
- Roman Pearah - For your bug reports, help in triaging issues, and PR contributions.
- Spencer Dixin - For your creation of redux-cli.
- Jonas Matser - For your help in triaging issues and unending support in our Gitter channel.
And to everyone else who has contributed, even if you are not listed here your work is appreciated.