Skip to content

Commit

Permalink
feat: iteration & recursion in Zig (#804)
Browse files Browse the repository at this point in the history
* iteration & recursion in Zig

* missing part in time_complexity.md (zig)

* build.zig sync

* Update recursion.zig

* Update iteration.zig

---------

Co-authored-by: Yudong Jin <[email protected]>
  • Loading branch information
QiLOL and krahets authored Oct 24, 2023
1 parent 1902314 commit 2035aa0
Show file tree
Hide file tree
Showing 4 changed files with 215 additions and 3 deletions.
8 changes: 8 additions & 0 deletions codes/zig/build.zig
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,14 @@ pub fn build(b: *std.Build) void {
// Run Command: zig build run_space_complexity -Doptimize=ReleaseSafe
.{ .name = "space_complexity", .path = "chapter_computational_complexity/space_complexity.zig" },

// Source File: "chapter_computational_complexity/iteration.zig"
// Run Command: zig build run_iteration -Doptimize=ReleaseFast
.{ .name = "iteration", .path = "chapter_computational_complexity/iteration.zig" },

// Source File: "chapter_computational_complexity/recursion.zig"
// Run Command: zig build run_recursion -Doptimize=ReleaseFast
.{ .name = "recursion", .path = "chapter_computational_complexity/recursion.zig" },

// Source File: "chapter_array_and_linkedlist/array.zig"
// Run Command: zig build run_array -Doptimize=ReleaseSafe
.{ .name = "array", .path = "chapter_array_and_linkedlist/array.zig" },
Expand Down
77 changes: 77 additions & 0 deletions codes/zig/chapter_computational_complexity/iteration.zig
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
// File: iteration.zig
// Created Time: 2023-09-27
// Author: QiLOL ([email protected])

const std = @import("std");
const Allocator = std.mem.Allocator;

// for 循环
fn forLoop(n: usize) i32 {
var res: i32 = 0;
// 循环求和 1, 2, ..., n-1, n
for (1..n+1) |i| {
res = res + @as(i32, @intCast(i));
}
return res;
}

// while 循环
fn whileLoop(n: i32) i32 {
var res: i32 = 0;
var i: i32 = 1; // 初始化条件变量
// 循环求和 1, 2, ..., n-1, n
while (i <= n) {
res += @intCast(i);
i += 1;
}
return res;
}

// while 循环(两次更新)
fn whileLoopII(n: i32) i32 {
var res: i32 = 0;
var i: i32 = 1; // 初始化条件变量
// 循环求和 1, 4, ...
while (i <= n) {
res += @intCast(i);
// 更新条件变量
i += 1;
i *= 2;
}
return res;
}

// 双层 for 循环
fn nestedForLoop(allocator: Allocator, n: usize) ![]const u8 {
var res = std.ArrayList(u8).init(allocator);
defer res.deinit();
var buffer: [20]u8 = undefined;
// 循环 i = 1, 2, ..., n-1, n
for (1..n+1) |i| {
// 循环 j = 1, 2, ..., n-1, n
for (1..n+1) |j| {
var _str = try std.fmt.bufPrint(&buffer, "({d}, {d}), ", .{i, j});
try res.appendSlice(_str);
}
}
return res.toOwnedSlice();
}

// Driver Code
pub fn main() !void {
const n: i32 = 5;
var res: i32 = 0;

res = forLoop(n);
std.debug.print("\nfor 循环的求和结果 res = {}\n", .{res});

res = whileLoop(n);
std.debug.print("\nwhile 循环的求和结果 res = {}\n", .{res});

res = whileLoopII(n);
std.debug.print("\nwhile 循环(两次更新)求和结果 res = {}\n", .{res});

const allocator = std.heap.page_allocator;
const resStr = try nestedForLoop(allocator, n);
std.debug.print("\n双层 for 循环的遍历结果 {s}\n", .{resStr});
}
78 changes: 78 additions & 0 deletions codes/zig/chapter_computational_complexity/recursion.zig
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
// File: recursion.zig
// Created Time: 2023-09-27
// Author: QiLOL ([email protected])

const std = @import("std");

// 递归函数
fn recur(n: i32) i32 {
// 终止条件
if (n == 1) {
return 1;
}
// 递:递归调用
var res: i32 = recur(n - 1);
// 归:返回结果
return n + res;
}

// 使用迭代模拟递归
fn forLoopRecur(comptime n: i32) i32 {
// 使用一个显式的栈来模拟系统调用栈
var stack: [n]i32 = undefined;
var res: i32 = 0;
// 递:递归调用
var i: usize = n;
while (i > 0) {
stack[i - 1] = @intCast(i);
i -= 1;
}
// 归:返回结果
var index: usize = n;
while (index > 0) {
index -= 1;
res += stack[index];
}
// res = 1+2+3+...+n
return res;
}

// 尾递归函数
fn tailRecur(n: i32, res: i32) i32 {
// 终止条件
if (n == 0) {
return res;
}
// 尾递归调用
return tailRecur(n - 1, res + n);
}

// 斐波那契数列
fn fib(n: i32) i32 {
// 终止条件 f(1) = 0, f(2) = 1
if (n == 1 or n == 2) {
return n - 1;
}
// 递归调用 f(n) = f(n-1) + f(n-2)
var res: i32 = fib(n - 1) + fib(n - 2);
// 返回结果 f(n)
return res;
}

// Driver Code
pub fn main() !void {
const n: i32 = 5;
var res: i32 = 0;

res = recur(n);
std.debug.print("\n递归函数的求和结果 res = {}\n", .{recur(n)});

res = forLoopRecur(n);
std.debug.print("\n使用迭代模拟递归的求和结果 res = {}\n", .{forLoopRecur(n)});

res = tailRecur(n, 0);
std.debug.print("\n尾递归函数的求和结果 res = {}\n", .{tailRecur(n, 0)});

res = fib(n);
std.debug.print("\n斐波那契数列的第 {} 项为 {}\n", .{n, fib(n)});
}
55 changes: 52 additions & 3 deletions docs/chapter_computational_complexity/time_complexity.md
Original file line number Diff line number Diff line change
Expand Up @@ -174,7 +174,16 @@
=== "Zig"

```zig title=""

// 在某运行平台下
fn algorithm(n: usize) void {
var a: i32 = 2; // 1 ns
a += 1; // 1 ns
a *= 2; // 10 ns
// 循环 n 次
for (0..n) |_| { // 1 ns
std.debug.print("{}\n", .{0}); // 5 ns
}
}
```

根据以上方法,可以得到算法运行时间为 $6n + 12$ ns :
Expand Down Expand Up @@ -423,7 +432,24 @@ $$
=== "Zig"

```zig title=""

// 算法 A 的时间复杂度:常数阶
fn algorithm_A(n: usize) void {
_ = n;
std.debug.print("{}\n", .{0});
}
// 算法 B 的时间复杂度:线性阶
fn algorithm_B(n: i32) void {
for (0..n) |_| {
std.debug.print("{}\n", .{0});
}
}
// 算法 C 的时间复杂度:常数阶
fn algorithm_C(n: i32) void {
_ = n;
for (0..1000000) |_| {
std.debug.print("{}\n", .{0});
}
}
```

下图展示了以上三个算法函数的时间复杂度。
Expand Down Expand Up @@ -600,7 +626,15 @@ $$
=== "Zig"

```zig title=""

fn algorithm(n: usize) void {
var a: i32 = 1; // +1
a += 1; // +1
a *= 2; // +1
// 循环 n 次
for (0..n) |_| { // +1(每轮都执行 i ++)
std.debug.print("{}\n", .{0}); // +1
}
}
```

设算法的操作数量是一个关于输入数据大小 $n$ 的函数,记为 $T(n)$ ,则以上函数的的操作数量为:
Expand Down Expand Up @@ -849,7 +883,22 @@ $T(n)$ 是一次函数,说明其运行时间的增长趋势是线性的,因
=== "Zig"

```zig title=""
fn algorithm(n: usize) void {
var a: i32 = 1; // +0(技巧 1)
a = a + @as(i32, @intCast(n)); // +0(技巧 1)

// +n(技巧 2)
for(0..(5 * n + 1)) |_| {
std.debug.print("{}\n", .{0});
}

// +n*n(技巧 3)
for(0..(2 * n)) |_| {
for(0..(n + 1)) |_| {
std.debug.print("{}\n", .{0});
}
}
}
```

以下公式展示了使用上述技巧前后的统计结果,两者推出的时间复杂度都为 $O(n^2)$ 。
Expand Down

0 comments on commit 2035aa0

Please sign in to comment.