Skip to content

kkchau/WeightedNetAnalysisTut

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

46 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Weighted Co-Expression Networks and Functional Enrichment Analysis in R

This Docker image runs based on rocker/verse and provides the necessary packages, data files, and R Markdown file for a WGCNA-based gene co-expression network analysis on publicly available brain expression data.

Docker image hosted at https://hub.docker.com/r/kkhaichau/weighted_networks

Instructions

docker run -p 8787:8787 -v /your/working/directory:/home/rstudio/work kkhaichau/weighted_networks

Then, launch a web browser, navigate to localhost:8787, and run the tutorial.

LOGIN:
Username = rstudio
Password = rstudio


Recommended Docker settings include:

  • CPUs: 2
  • Memory: 4096 MB

References

  1. Allen Institute for Brain Science (2018). BrainSpan Atlas of the Developing Human Brain. RNA-seq Gencode v10 summarized to genes. Available from https://brainspan.org
  2. Chen, E. Y., Tan, C. M., Kou, Y., Duan, Q., Wang, Z., Meirelles, G. V., … Ma’ayan, A. (2013). Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics, 14, 128. http://doi.org/10.1186/1471-2105-14-128
  3. Langfelder, P., & Horvath, S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics, 9, 559. http://doi.org/10.1186/1471-2105-9-559
  4. Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., … Ma’ayan, A. (2016). Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(Web Server issue), W90–W97. http://doi.org/10.1093/nar/gkw377

About

WGCNA Guided Tutorial

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published