Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Modernize examples #1133

Merged
merged 23 commits into from
Jun 17, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 0 additions & 42 deletions .github/workflows/numpy2.yml

This file was deleted.

5 changes: 5 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -214,9 +214,14 @@ with respect to documented and/or tested features.
- Fixed: `Mesh.p2e` returned incorrect incidence
- Fixed: `InteriorFacetBasis.get_dofs` did not return all edge DOFs for 3D elements
- Added: The lowest order, one point integration rule for tetrahedral elements
- Added: `asm` will now wrap functions with three arguments using `BilinearForm`,
functions with two arguments using `LinearForm`, etc.
- Changed: Initializing `Basis` for `ElementTetP0` without specifying
`intorder` or `quadrature` will now automatically fall back to a one
point integration rule
- Changed: Default tags ('left', 'right', 'top', ...) are no more
added automatically during mesh initialization, as a workaround you
can add them explicitly by calling `mesh = mesh.with_defaults()`

### [9.1.1] - 2024-04-23

Expand Down
1 change: 0 additions & 1 deletion docs/advanced.rst
Original file line number Diff line number Diff line change
Expand Up @@ -167,7 +167,6 @@ cube mesh:
Number of elements: 1
Number of vertices: 8
Number of nodes: 8
Named boundaries [# facets]: left [1], bottom [1], front [1], right [1], top [1], back [1]
>>> basis = Basis(m, ElementHex2())
>>> basis
<skfem CellBasis(MeshHex1, ElementHex2) object>
Expand Down
13 changes: 6 additions & 7 deletions docs/examples/ex01.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,26 +10,25 @@
m = MeshTri().refined(6)
# or, with your own points and cells:
# m = MeshTri(points, cells)
# or, load from file
# m = MeshTri.load("mesh.msh")

e = ElementTriP1()
basis = Basis(m, e)

# this method could also be imported from skfem.models.laplace

@BilinearForm
def laplace(u, v, _):
return dot(grad(u), grad(v))


# this method could also be imported from skfem.models.unit_load
@LinearForm
def rhs(v, _):
return 1.0 * v

A = asm(laplace, basis)
b = asm(rhs, basis)
# or:
# A = laplace.assemble(basis)
# b = rhs.assemble(basis)

A = laplace.assemble(basis)
b = rhs.assemble(basis)

# enforce Dirichlet boundary conditions
A, b = enforce(A, b, D=m.boundary_nodes())
Expand Down
75 changes: 28 additions & 47 deletions docs/examples/ex02.py
Original file line number Diff line number Diff line change
@@ -1,8 +1,6 @@
r"""
r"""Kirchhoff plate problem.

This example demonstrates the solution of a slightly more complicated problem
with multiple boundary conditions and a fourth-order differential operator. We
consider the `Kirchhoff plate bending problem
This example demonstrates the solution a fourth order `Kirchhoff plate bending problem
<https://en.wikipedia.org/wiki/Kirchhoff%E2%80%93Love_plate_theory>`_ which
finds its applications in solid mechanics. For a stationary plate of constant
thickness :math:`d`, the governing equation reads: find the deflection :math:`u
Expand All @@ -16,20 +14,6 @@
The Young's modulus of steel is :math:`E = 200 \cdot 10^9\,\text{Pa}` and Poisson
ratio :math:`\nu = 0.3`.

In reality, the operator

.. math::
\frac{Ed^3}{12(1-\nu^2)} \Delta^2
is a combination of multiple first-order operators:

.. math::
\boldsymbol{K}(u) = - \boldsymbol{\varepsilon}(\nabla u), \quad \boldsymbol{\varepsilon}(\boldsymbol{w}) = \frac12(\nabla \boldsymbol{w} + \nabla \boldsymbol{w}^T),
.. math::
\boldsymbol{M}(u) = \frac{d^3}{12} \mathbb{C} \boldsymbol{K}(u), \quad \mathbb{C} \boldsymbol{T} = \frac{E}{1+\nu}\left( \boldsymbol{T} + \frac{\nu}{1-\nu}(\text{tr}\,\boldsymbol{T})\boldsymbol{I}\right),
where :math:`\boldsymbol{I}` is the identity matrix. In particular,

.. math::
\frac{Ed^3}{12(1-\nu^2)} \Delta^2 u = - \text{div}\,\textbf{div}\,\boldsymbol{M}(u).
There are several boundary conditions that the problem can take.
The *fully clamped* boundary condition reads

Expand Down Expand Up @@ -61,54 +45,51 @@
<https://users.aalto.fi/~jakke74/WebFiles/Slides-Niiranen-ADMOS-09.pdf>`_ which
is a piecewise quadratic :math:`C^0`-continuous element for biharmonic problems.

The full source code of the example reads as follows:

.. literalinclude:: examples/ex02.py
:start-after: EOF"""
"""
from skfem import *
from skfem.models.poisson import unit_load
from skfem.helpers import dd, ddot, trace, eye
import numpy as np

m = (
MeshTri.init_symmetric()
.refined(3)
.with_boundaries(
{
"left": lambda x: x[0] == 0,
"right": lambda x: x[0] == 1,
"top": lambda x: x[1] == 1,
}
)
)
m = (MeshTri
.init_symmetric()
.refined(3)
.with_defaults())
basis = Basis(m, ElementTriMorley())

d = 0.1
E = 200e9
nu = 0.3


e = ElementTriMorley()
ib = Basis(m, e)
def C(T):
return E / (1 + nu) * (T + nu / (1 - nu) * eye(trace(T), 2))


@BilinearForm
def bilinf(u, v, w):
from skfem.helpers import dd, ddot, trace, eye
d = 0.1
E = 200e9
nu = 0.3
def bilinf(u, v, _):
return d ** 3 / 12.0 * ddot(C(dd(u)), dd(v))

def C(T):
return E / (1 + nu) * (T + nu / (1 - nu) * eye(trace(T), 2))

return d**3 / 12.0 * ddot(C(dd(u)), dd(v))
@LinearForm
def load(v, _):
return 1e6 * v


K = asm(bilinf, ib)
f = 1e6 * asm(unit_load, ib)
K = bilinf.assemble(basis)
f = load.assemble(basis)

D = np.hstack([ib.get_dofs("left"), ib.get_dofs({"right", "top"}).all("u")])
D = np.hstack((
basis.get_dofs("left"),
basis.get_dofs({"right", "top"}).all("u"),
))

x = solve(*condense(K, f, D=D))

def visualize():
from skfem.visuals.matplotlib import draw, plot
ax = draw(m)
return plot(ib,
return plot(basis,
x,
ax=ax,
shading='gouraud',
Expand Down
48 changes: 23 additions & 25 deletions docs/examples/ex03.py
Original file line number Diff line number Diff line change
@@ -1,58 +1,56 @@
"""Linear elastic eigenvalue problem."""

from skfem import *
from skfem.helpers import dot, ddot, sym_grad
from skfem.models.elasticity import linear_elasticity, linear_stress
from skfem.helpers import dot, ddot, sym_grad, eye, trace
import numpy as np

m1 = MeshLine(np.linspace(0, 5, 50))
m2 = MeshLine(np.linspace(0, 1, 10))
m = (m1 * m2).with_boundaries(
{
"left": lambda x: x[0] == 0.0
}
)
m = (m1 * m2).with_defaults()

e1 = ElementQuad1()

mapping = MappingIsoparametric(m, e1)

e = ElementVector(e1)

gb = Basis(m, e, mapping, 2)
basis = Basis(m, e, intorder=2)

lam = 1.
mu = 1.
K = asm(linear_elasticity(lam, mu), gb)


def C(T):
return 2. * mu * T + lam * eye(trace(T), T.shape[0])


@BilinearForm
def stiffness(u, v, w):
return ddot(C(sym_grad(u)), sym_grad(v))


@BilinearForm
def mass(u, v, w):
return dot(u, v)

M = asm(mass, gb)

D = gb.get_dofs("left")
y = gb.zeros()
K = stiffness.assemble(basis)
M = mass.assemble(basis)

I = gb.complement_dofs(D)
D = basis.get_dofs("left")

L, x = solve(*condense(K, M, I=I),
L, x = solve(*condense(K, M, D=D),
solver=solver_eigen_scipy_sym(k=6, sigma=0.0))

y = x[:, 4]

# calculate stress
sgb = gb.with_element(ElementVector(e))
C = linear_stress(lam, mu)
yi = gb.interpolate(y)
sigma = sgb.project(C(sym_grad(yi)))
y = x[:, 4]
sbasis = basis.with_element(ElementVector(e))
yi = basis.interpolate(y)
sigma = sbasis.project(C(sym_grad(yi)))

def visualize():
from skfem.visuals.matplotlib import plot, draw
M = MeshQuad(np.array(m.p + .5 * y[gb.nodal_dofs]), m.t)
M = MeshQuad(np.array(m.p + .5 * y[basis.nodal_dofs]), m.t)
ax = draw(M)
return plot(M,
sigma[sgb.nodal_dofs[0]],
sigma[sbasis.nodal_dofs[0]],
ax=ax,
colorbar='$\sigma_{xx}$',
shading='gouraud')
Expand Down
23 changes: 12 additions & 11 deletions docs/examples/ex05.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,17 +15,19 @@
to a saddle point system.

"""

from skfem import *
from skfem.helpers import dot, grad
from skfem.models.poisson import laplace
import numpy as np
import scipy.sparse


m = MeshTri().refined(5).with_boundaries({"plate": lambda x: x[1] == 0.0})

e = ElementTriP1()

ib = Basis(m, e)
fb = FacetBasis(m, e)
basis = Basis(m, e)
fbasis = FacetBasis(m, e)


@BilinearForm
Expand All @@ -42,19 +44,18 @@ def facetlinf(v, w):
return -dot(grad(v), n) * (x[0] == 1.0)


A = asm(laplace, ib)
B = asm(facetbilinf, fb)
A = laplace.assemble(basis)
B = facetbilinf.assemble(fbasis)
b = facetlinf.assemble(fbasis)

b = asm(facetlinf, fb)
I = basis.complement_dofs(basis.get_dofs("plate"))

I = ib.complement_dofs(ib.get_dofs("plate"))

import scipy.sparse
b = scipy.sparse.csr_matrix(b)
K = scipy.sparse.bmat([[A+B, b.T], [b, None]], 'csr')

import numpy as np
f = np.concatenate((ib.zeros(), -1.0*np.ones(1)))
# create a block system with an extra Lagrange multiplier
K = scipy.sparse.bmat([[A + B, b.T], [b, None]], 'csr')
f = np.concatenate((basis.zeros(), -1.0 * np.ones(1)))

I = np.append(I, K.shape[0] - 1)

Expand Down
11 changes: 5 additions & 6 deletions docs/examples/ex06.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,16 +33,15 @@

e1 = ElementQuad1()
e = ElementQuad2()
mapping = MappingIsoparametric(m, e1)
ib = Basis(m, e, mapping, 4)
basis = Basis(m, e, intorder=4)

K = asm(laplace, ib)
K = laplace.assemble(basis)

f = asm(unit_load, ib)
f = unit_load.assemble(basis)

x = solve(*condense(K, f, D=ib.get_dofs()))
x = solve(*condense(K, f, D=basis.get_dofs()))

M, X = ib.refinterp(x, 3)
M, X = basis.refinterp(x, 3)

if __name__ == "__main__":
from os.path import splitext
Expand Down
Loading
Loading