Keras 3.4.0
Highlights
- Add support for arbitrary, deeply nested input/output structures in Functional models (e.g. dicts of dicts of lists of inputs or outputs...)
- Add support for optional Functional inputs.
- Introduce
keras.dtype_policies.DTypePolicyMap
for easy configuration of dtype policies of nested sublayers of a subclassed layer/model. - New ops:
keras.ops.argpartition
keras.ops.scan
keras.ops.lstsq
keras.ops.switch
keras.ops.dtype
keras.ops.map
keras.ops.image.rgb_to_hsv
keras.ops.image.hsv_to_rgb
What's changed
- Add support for
float8
inference forDense
andEinsumDense
layers. - Add custom
name
argument in all Keras Applications models. - Add
axis
argument inkeras.losses.Dice
. - Enable
keras.utils.FeatureSpace
to be used in atf.data
pipeline even when the backend isn't TensorFlow. StringLookup
layer can now taketf.SparseTensor
as input.Metric.variables
is now recursive.- Add
training
argument toModel.compute_loss()
. - Add
dtype
argument to all losses. keras.utils.split_dataset
now supports nested structures in dataset.- Bugs fixes and performance improvements.
Full Changelog: v3.3.3...v3.4.0