Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PSNR API #19616

Merged
merged 2 commits into from
Apr 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions keras/api/_tf_keras/keras/ops/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@
from keras.src.ops.nn import multi_hot
from keras.src.ops.nn import normalize
from keras.src.ops.nn import one_hot
from keras.src.ops.nn import psnr
from keras.src.ops.nn import relu
from keras.src.ops.nn import relu6
from keras.src.ops.nn import selu
Expand Down
1 change: 1 addition & 0 deletions keras/api/_tf_keras/keras/ops/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from keras.src.ops.nn import multi_hot
from keras.src.ops.nn import normalize
from keras.src.ops.nn import one_hot
from keras.src.ops.nn import psnr
from keras.src.ops.nn import relu
from keras.src.ops.nn import relu6
from keras.src.ops.nn import selu
Expand Down
1 change: 1 addition & 0 deletions keras/api/ops/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@
from keras.src.ops.nn import multi_hot
from keras.src.ops.nn import normalize
from keras.src.ops.nn import one_hot
from keras.src.ops.nn import psnr
from keras.src.ops.nn import relu
from keras.src.ops.nn import relu6
from keras.src.ops.nn import selu
Expand Down
1 change: 1 addition & 0 deletions keras/api/ops/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@
from keras.src.ops.nn import multi_hot
from keras.src.ops.nn import normalize
from keras.src.ops.nn import one_hot
from keras.src.ops.nn import psnr
from keras.src.ops.nn import relu
from keras.src.ops.nn import relu6
from keras.src.ops.nn import selu
Expand Down
13 changes: 13 additions & 0 deletions keras/src/backend/jax/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -926,3 +926,16 @@ def ctc_decode(
f"Invalid strategy {strategy}. Supported values are "
"'greedy' and 'beam_search'."
)


def psnr(x1, x2, max_val):
if x1.shape != x2.shape:
raise ValueError(
f"Input shapes {x1.shape} and {x2.shape} must "
"match for PSNR calculation. "
)

max_val = convert_to_tensor(max_val, dtype=x2.dtype)
mse = jnp.mean(jnp.square(x1 - x2))
psnr = 20 * jnp.log10(max_val) - 10 * jnp.log10(mse)
return psnr
13 changes: 13 additions & 0 deletions keras/src/backend/numpy/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -967,3 +967,16 @@ def ctc_decode(
f"Invalid strategy {strategy}. Supported values are "
"'greedy' and 'beam_search'."
)


def psnr(x1, x2, max_val):
if x1.shape != x2.shape:
raise ValueError(
f"Input shapes {x1.shape} and {x2.shape} must "
"match for PSNR calculation. "
)

max_val = convert_to_tensor(max_val, dtype=x2.dtype)
mse = np.mean(np.square(x1 - x2))
psnr = 20 * np.log10(max_val) - 10 * np.log10(mse)
return psnr
15 changes: 15 additions & 0 deletions keras/src/backend/tensorflow/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -846,3 +846,18 @@ def ctc_decode(
decoded_dense = tf.stack(decoded_dense, axis=0)
decoded_dense = tf.cast(decoded_dense, "int32")
return decoded_dense, scores


def psnr(x1, x2, max_val):
from keras.src.backend.tensorflow.numpy import log10

if x1.shape != x2.shape:
raise ValueError(
f"Input shapes {x1.shape} and {x2.shape} must "
"match for PSNR calculation. "
)

max_val = convert_to_tensor(max_val, dtype=x2.dtype)
mse = tf.reduce_mean(tf.square(x1 - x2))
psnr = 20 * log10(max_val) - 10 * log10(mse)
return psnr
17 changes: 17 additions & 0 deletions keras/src/backend/torch/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -848,3 +848,20 @@ def ctc_decode(
f"Invalid strategy {strategy}. Supported values are "
"'greedy' and 'beam_search'."
)


def psnr(x1, x2, max_val):
if x1.shape != x2.shape:
raise ValueError(
f"Input shapes {x1.shape} and {x2.shape} must "
"match for PSNR calculation. "
)

x1, x2 = (
convert_to_tensor(x1),
convert_to_tensor(x2),
)
max_val = convert_to_tensor(max_val, dtype=x1.dtype)
mse = torch.mean((x1 - x2) ** 2)
psnr = 20 * torch.log10(max_val) - 10 * torch.log10(mse)
return psnr
74 changes: 74 additions & 0 deletions keras/src/ops/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -2042,3 +2042,77 @@ def _normalize(x, axis=-1, order=2):
norm = backend.linalg.norm(x, ord=order, axis=axis, keepdims=True)
denom = backend.numpy.maximum(norm, epsilon)
return backend.numpy.divide(x, denom)


class PSNR(Operation):
def __init__(
self,
max_val,
):
super().__init__()
self.max_val = max_val

def call(self, x1, x2):
return backend.nn.psnr(
x1=x1,
x2=x2,
max_val=self.max_val,
)

def compute_output_spec(self, x1, x2):
if len(x1.shape) != len(x2.shape):
raise ValueError("Inputs must have the same rank")

return KerasTensor(shape=())


@keras_export(
[
"keras.ops.psnr",
"keras.ops.nn.psnr",
]
)
def psnr(
x1,
x2,
max_val,
):
"""Peak Signal-to-Noise Ratio (PSNR) calculation.

This function calculates the Peak Signal-to-Noise Ratio between two signals,
`x1` and `x2`. PSNR is a measure of the quality of a reconstructed signal.
The higher the PSNR, the closer the reconstructed signal is to the original
signal.

Args:
x1: The first input signal.
x2: The second input signal. Must have the same shape as `x1`.
max_val: The maximum possible value in the signals.

Returns:
float: The PSNR value between `x1` and `x2`.

Examples:
>>> import numpy as np
>>> from keras import ops
>>> x = np.random.random((2, 4, 4, 3))
>>> y = np.random.random((2, 4, 4, 3))
>>> max_val = 1.0
>>> psnr_value = ops.nn.psnr(x, y, max_val)
>>> psnr_value
20.0
"""
if any_symbolic_tensors(
(
x1,
x2,
)
):
return PSNR(
max_val,
).symbolic_call(x1, x2)
return backend.nn.psnr(
x1,
x2,
max_val,
)
31 changes: 31 additions & 0 deletions keras/src/ops/nn_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -654,6 +654,12 @@ def test_normalize(self):
x = KerasTensor([None, 2, 3])
self.assertEqual(knn.normalize(x).shape, (None, 2, 3))

def test_psnr(self):
x1 = KerasTensor([None, 2, 3])
x2 = KerasTensor([None, 5, 6])
out = knn.psnr(x1, x2, max_val=224)
self.assertEqual(out.shape, ())


class NNOpsStaticShapeTest(testing.TestCase):
def test_relu(self):
Expand Down Expand Up @@ -1114,6 +1120,12 @@ def test_normalize(self):
x = KerasTensor([1, 2, 3])
self.assertEqual(knn.normalize(x).shape, (1, 2, 3))

def test_psnr(self):
x1 = KerasTensor([1, 2, 3])
x2 = KerasTensor([5, 6, 7])
out = knn.psnr(x1, x2, max_val=224)
self.assertEqual(out.shape, ())


class NNOpsCorrectnessTest(testing.TestCase, parameterized.TestCase):
def test_relu(self):
Expand Down Expand Up @@ -2032,6 +2044,25 @@ def test_normalize(self):
],
)

def test_psnr(self):
x1 = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
x2 = np.array([[0.2, 0.2, 0.3], [0.4, 0.6, 0.6]])
max_val = 1.0
expected_psnr_1 = 20 * np.log10(max_val) - 10 * np.log10(
np.mean(np.square(x1 - x2))
)
psnr_1 = knn.psnr(x1, x2, max_val)
self.assertAlmostEqual(psnr_1, expected_psnr_1)

x3 = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
x4 = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
max_val = 1.0
expected_psnr_2 = 20 * np.log10(max_val) - 10 * np.log10(
np.mean(np.square(x3 - x4))
)
psnr_2 = knn.psnr(x3, x4, max_val)
self.assertAlmostEqual(psnr_2, expected_psnr_2)


class NNOpsDtypeTest(testing.TestCase, parameterized.TestCase):
"""Test the dtype to verify that the behavior matches JAX."""
Expand Down
Loading