Skip to content

Commit

Permalink
Increase-test-coverage in backend_utils (#940)
Browse files Browse the repository at this point in the history
* Increase-test-coverage in `backend_utils`

* Increase-test-coverage in `backend_utils`

* Increase-test-coverage in `backend_utils`

* ncrease-test-coverage in `backend_utils`

* ncrease-test-coverage in `backend_utils`

* ncrease-test-coverage in `backend_utils`

* Increase-test-coverage in `backend_utils`
  • Loading branch information
Faisal-Alsrheed authored Sep 22, 2023
1 parent 6383d8a commit 9bf92c8
Showing 1 changed file with 235 additions and 0 deletions.
235 changes: 235 additions & 0 deletions keras_core/backend/common/backend_utils_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,235 @@
from keras_core.backend.common.backend_utils import (
_convert_conv_tranpose_padding_args_from_keras_to_jax,
)
from keras_core.backend.common.backend_utils import (
_convert_conv_tranpose_padding_args_from_keras_to_torch,
)
from keras_core.backend.common.backend_utils import (
_get_output_shape_given_tf_padding,
)
from keras_core.backend.common.backend_utils import (
compute_conv_transpose_padding_args_for_jax,
)
from keras_core.backend.common.backend_utils import (
compute_conv_transpose_padding_args_for_torch,
)
from keras_core.testing import test_case


class ConvertConvTransposePaddingArgsJAXTest(test_case.TestCase):
def test_valid_padding_without_output_padding(self):
"""Test conversion with 'valid' padding and no output padding"""
(
left_pad,
right_pad,
) = _convert_conv_tranpose_padding_args_from_keras_to_jax(
kernel_size=3,
stride=2,
dilation_rate=1,
padding="valid",
output_padding=None,
)
self.assertEqual(left_pad, 2)
self.assertEqual(right_pad, 2)

def test_same_padding_without_output_padding(self):
"""Test conversion with 'same' padding and no output padding."""
(
left_pad,
right_pad,
) = _convert_conv_tranpose_padding_args_from_keras_to_jax(
kernel_size=3,
stride=2,
dilation_rate=1,
padding="same",
output_padding=None,
)
self.assertEqual(left_pad, 2)
self.assertEqual(right_pad, 1)


class ConvertConvTransposePaddingArgsTorchTest(test_case.TestCase):
def test_valid_padding_without_output_padding(self):
"""Test conversion with 'valid' padding and no output padding"""
(
torch_padding,
torch_output_padding,
) = _convert_conv_tranpose_padding_args_from_keras_to_torch(
kernel_size=3,
stride=2,
dilation_rate=1,
padding="valid",
output_padding=None,
)
self.assertEqual(torch_padding, 0)
self.assertEqual(torch_output_padding, 0)

def test_same_padding_without_output_padding(self):
"""Test conversion with 'same' padding and no output padding"""
(
torch_padding,
torch_output_padding,
) = _convert_conv_tranpose_padding_args_from_keras_to_torch(
kernel_size=3,
stride=2,
dilation_rate=1,
padding="same",
output_padding=None,
)
self.assertEqual(torch_padding, 1)
self.assertEqual(torch_output_padding, 1)


class ComputeConvTransposePaddingArgsForJAXTest(test_case.TestCase):
def test_valid_padding_without_output_padding(self):
"""Test computation with 'valid' padding and no output padding"""
jax_padding = compute_conv_transpose_padding_args_for_jax(
input_shape=(1, 5, 5, 3),
kernel_shape=(3, 3, 3, 3),
strides=2,
padding="valid",
output_padding=None,
dilation_rate=1,
)
self.assertEqual(jax_padding, [(2, 2), (2, 2)])

def test_same_padding_without_output_padding(self):
"""Test computation with 'same' padding and no output padding"""
jax_padding = compute_conv_transpose_padding_args_for_jax(
input_shape=(1, 5, 5, 3),
kernel_shape=(3, 3, 3, 3),
strides=2,
padding="same",
output_padding=None,
dilation_rate=1,
)

self.assertEqual(jax_padding, [(2, 1), (2, 1)])


class ComputeConvTransposePaddingArgsForTorchTest(test_case.TestCase):
def test_valid_padding_without_output_padding(self):
"""Test computation with 'valid' padding and no output padding"""
(
torch_paddings,
torch_output_paddings,
) = compute_conv_transpose_padding_args_for_torch(
input_shape=(1, 5, 5, 3),
kernel_shape=(3, 3, 3, 3),
strides=2,
padding="valid",
output_padding=None,
dilation_rate=1,
)
self.assertEqual(torch_paddings, [0, 0])
self.assertEqual(torch_output_paddings, [0, 0])

def test_same_padding_without_output_padding(self):
"""Test computation with 'same' padding and no output padding"""
(
torch_paddings,
torch_output_paddings,
) = compute_conv_transpose_padding_args_for_torch(
input_shape=(1, 5, 5, 3),
kernel_shape=(3, 3, 3, 3),
strides=2,
padding="same",
output_padding=None,
dilation_rate=1,
)
self.assertEqual(torch_paddings, [1, 1])
self.assertEqual(torch_output_paddings, [1, 1])

def test_valid_padding_with_none_output_padding(self):
"""Test conversion with 'valid' padding and no output padding"""
(
torch_padding,
torch_output_padding,
) = _convert_conv_tranpose_padding_args_from_keras_to_torch(
kernel_size=3,
stride=2,
dilation_rate=1,
padding="valid",
output_padding=None,
)
self.assertEqual(torch_padding, 0)
self.assertEqual(torch_output_padding, 0)

def test_valid_padding_with_output_padding(self):
"""Test conversion with 'valid' padding and output padding for Torch."""
(
torch_padding,
torch_output_padding,
) = _convert_conv_tranpose_padding_args_from_keras_to_torch(
kernel_size=3,
stride=2,
dilation_rate=1,
padding="valid",
output_padding=1,
)
self.assertEqual(torch_padding, 0)
self.assertEqual(torch_output_padding, 1)


class GetOutputShapeGivenTFPaddingTest(test_case.TestCase):
def test_valid_padding_without_output_padding(self):
"""Test computation with 'valid' padding and no output padding."""
output_shape = _get_output_shape_given_tf_padding(
input_size=5,
kernel_size=3,
strides=2,
padding="valid",
output_padding=None,
dilation_rate=1,
)
self.assertEqual(output_shape, 11)

def test_same_padding_without_output_padding(self):
"""Test computation with 'same' padding and no output padding."""
output_shape = _get_output_shape_given_tf_padding(
input_size=5,
kernel_size=3,
strides=2,
padding="same",
output_padding=None,
dilation_rate=1,
)
self.assertEqual(output_shape, 10)

def test_valid_padding_with_output_padding(self):
"""Test computation with 'valid' padding and output padding."""
output_shape = _get_output_shape_given_tf_padding(
input_size=5,
kernel_size=3,
strides=2,
padding="valid",
output_padding=1,
dilation_rate=1,
)
self.assertEqual(output_shape, 12)

def test_warning_for_inconsistencies(self):
"""Test that a warning is raised for potential inconsistencies"""
with self.assertWarns(Warning):
_convert_conv_tranpose_padding_args_from_keras_to_torch(
kernel_size=3,
stride=2,
dilation_rate=1,
padding="same",
output_padding=1,
)

def test_same_padding_without_output_padding_for_torch_(self):
"""Test conversion with 'same' padding and no output padding."""
(
torch_padding,
torch_output_padding,
) = _convert_conv_tranpose_padding_args_from_keras_to_torch(
kernel_size=3,
stride=2,
dilation_rate=1,
padding="same",
output_padding=None,
)
self.assertEqual(torch_padding, max(-((3 % 2 - 3) // 2), 0))
self.assertEqual(torch_output_padding, 1)

0 comments on commit 9bf92c8

Please sign in to comment.