Skip to content
/ ellp Public

Linear programming library (written in Rust) that provides primal and dual simplex solvers.

License

Notifications You must be signed in to change notification settings

kehlert/ellp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

66 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ellp

Crates.io docs.rs GitHub

Linear programming library that provides primal and dual simplex solvers. Both solvers are currently working for a small set of test problems. This library is an early work-in-progress.

Examples

Here is example code that sets up a linear program, and then solves it with both the primal and dual simplex solvers.

use ellp::*;

let mut prob = Problem::new();

let x1 = prob
    .add_var(2., Bound::TwoSided(-1., 1.), Some("x1".to_string()))
    .unwrap();

let x2 = prob
    .add_var(10., Bound::Upper(6.), Some("x2".to_string()))
    .unwrap();

let x3 = prob
    .add_var(0., Bound::Lower(0.), Some("x3".to_string()))
    .unwrap();

let x4 = prob
    .add_var(1., Bound::Fixed(0.), Some("x4".to_string()))
    .unwrap();

let x5 = prob
    .add_var(0., Bound::Free, Some("x5".to_string()))
    .unwrap();

prob.add_constraint(vec![(x1, 2.5), (x2, 3.5)], ConstraintOp::Gte, 5.)
    .unwrap();

prob.add_constraint(vec![(x2, 2.5), (x1, 4.5)], ConstraintOp::Lte, 1.)
    .unwrap();

prob.add_constraint(vec![(x3, -1.), (x4, -3.), (x5, -4.)], ConstraintOp::Eq, 2.)
    .unwrap();

println!("{}", prob);

let primal_solver = PrimalSimplexSolver::default();
let dual_solver = DualSimplexSolver::default();

let primal_result = primal_solver.solve(prob.clone()).unwrap();
let dual_result = dual_solver.solve(prob).unwrap();

if let SolverResult::Optimal(sol) = primal_result {
    println!("primal obj: {}", sol.obj());
    println!("primal opt point: {}", sol.x());
} else {
    panic!("should have an optimal point");
}

if let SolverResult::Optimal(sol) = dual_result {
    println!("dual obj: {}", sol.obj());
    println!("dual opt point: {}", sol.x());
} else {
    panic!("should have an optimal point");
}

The output is

minimize
+ 2 x1 + 10 x2 + 1 x4 

subject to
+ 2.5 x1 + 3.5 x2 ≥ 5
+ 2.5 x2 + 4.5 x1 ≤ 1
- 1 x3 - 3 x4 - 4 x5 = 2

with the bounds
-1 ≤ x1 ≤ 1
x2 ≤ 6
x3 ≥ 0
x4 = 0
x5 free

primal obj: 19.157894736842103
primal opt point: 
  ┌                     ┐
  │ -0.9473684210526313 │
  │  2.1052631578947367 │
  │                   0 │
  │                   0 │
  │                -0.5 │
  └                     ┘

dual obj: 19.157894736842103
dual opt point: 
  ┌                     ┐
  │ -0.9473684210526313 │
  │  2.1052631578947367 │
  │                   0 │
  │                   0 │
  │                -0.5 │
  └                     ┘

If the problem is infeasible or unbounded, then solve will return SolverResult::Infeasible or SolverResult::Unbounded, respectively.

Development priorities

  • clean up the code, add proper logging
  • performance improvements (LU factorization update, steepest edge)
  • add benchmarks and test problems, and document how to run them (and how to run all tests)
  • switch to sparse matrices (perhaps make it optional)
  • make a binary that solves problems given by mps files

Various notes

About

Linear programming library (written in Rust) that provides primal and dual simplex solvers.

Resources

License

Stars

Watchers

Forks

Packages

No packages published