forked from vgvassilev/clad
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
2556ba6
commit 4e6e569
Showing
10 changed files
with
2,688 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
#include "XSbench_header.cuh" | ||
|
||
// Moves all required data structures to the GPU's memory space | ||
SimulationData move_simulation_data_to_device( Inputs in, int mype, SimulationData SD ) | ||
{ | ||
if(mype == 0) printf("Allocating and moving simulation data to GPU memory space...\n"); | ||
|
||
//////////////////////////////////////////////////////////////////////////////// | ||
// SUMMARY: Simulation Data Structure Manifest for "SD" Object | ||
// Here we list all heap arrays (and lengths) in SD that would need to be | ||
// offloaded manually if using an accelerator with a seperate memory space | ||
//////////////////////////////////////////////////////////////////////////////// | ||
// int * num_nucs; // Length = length_num_nucs; | ||
// double * concs; // Length = length_concs | ||
// int * mats; // Length = length_mats | ||
// double * unionized_energy_array; // Length = length_unionized_energy_array | ||
// int * index_grid; // Length = length_index_grid | ||
// NuclideGridPoint * nuclide_grid; // Length = length_nuclide_grid | ||
// | ||
// Note: "unionized_energy_array" and "index_grid" can be of zero length | ||
// depending on lookup method. | ||
// | ||
// Note: "Lengths" are given as the number of objects in the array, not the | ||
// number of bytes. | ||
//////////////////////////////////////////////////////////////////////////////// | ||
size_t sz; | ||
size_t total_sz = 0; | ||
|
||
// Shallow copy of CPU simulation data to GPU simulation data | ||
SimulationData GSD = SD; | ||
|
||
// Move data to GPU memory space | ||
sz = GSD.length_num_nucs * sizeof(int); | ||
gpuErrchk( cudaMalloc((void **) &GSD.num_nucs, sz) ); | ||
gpuErrchk( cudaMemcpy(GSD.num_nucs, SD.num_nucs, sz, cudaMemcpyHostToDevice) ); | ||
total_sz += sz; | ||
|
||
sz = GSD.length_concs * sizeof(double); | ||
gpuErrchk( cudaMalloc((void **) &GSD.concs, sz) ); | ||
gpuErrchk( cudaMemcpy(GSD.concs, SD.concs, sz, cudaMemcpyHostToDevice) ); | ||
total_sz += sz; | ||
|
||
sz = GSD.length_mats * sizeof(int); | ||
gpuErrchk( cudaMalloc((void **) &GSD.mats, sz) ); | ||
gpuErrchk( cudaMemcpy(GSD.mats, SD.mats, sz, cudaMemcpyHostToDevice) ); | ||
total_sz += sz; | ||
|
||
sz = GSD.length_unionized_energy_array * sizeof(double); | ||
gpuErrchk( cudaMalloc((void **) &GSD.unionized_energy_array, sz) ); | ||
gpuErrchk( cudaMemcpy(GSD.unionized_energy_array, SD.unionized_energy_array, sz, cudaMemcpyHostToDevice) ); | ||
total_sz += sz; | ||
|
||
sz = GSD.length_index_grid * sizeof(int); | ||
gpuErrchk( cudaMalloc((void **) &GSD.index_grid, sz) ); | ||
gpuErrchk( cudaMemcpy(GSD.index_grid, SD.index_grid, sz, cudaMemcpyHostToDevice) ); | ||
total_sz += sz; | ||
|
||
sz = GSD.length_nuclide_grid * sizeof(NuclideGridPoint); | ||
gpuErrchk( cudaMalloc((void **) &GSD.nuclide_grid, sz) ); | ||
gpuErrchk( cudaMemcpy(GSD.nuclide_grid, SD.nuclide_grid, sz, cudaMemcpyHostToDevice) ); | ||
total_sz += sz; | ||
|
||
sz = GSD.length_nuclide_grid * sizeof(NuclideGridPoint); | ||
gpuErrchk( cudaMalloc((void **) &GSD.d_nuclide_grid, sz) ); | ||
gpuErrchk( cudaMemcpy(GSD.d_nuclide_grid, SD.d_nuclide_grid, sz, cudaMemcpyHostToDevice) ); | ||
total_sz += sz; | ||
|
||
// Allocate verification array on device. This structure is not needed on CPU, so we don't | ||
// have to copy anything over. | ||
sz = in.lookups * sizeof(unsigned long); | ||
gpuErrchk( cudaMalloc((void **) &GSD.verification, sz) ); | ||
total_sz += sz; | ||
GSD.length_verification = in.lookups; | ||
|
||
#ifdef PRINT | ||
gpuErrchk( cudaMalloc((void **) &GSD.dout, sizeof(double)) ); | ||
double zero = 0; | ||
gpuErrchk( cudaMemcpy(GSD.dout, &zero, sizeof(double), cudaMemcpyHostToDevice) ); | ||
#endif | ||
|
||
// Synchronize | ||
gpuErrchk( cudaPeekAtLastError() ); | ||
gpuErrchk( cudaDeviceSynchronize() ); | ||
|
||
if(mype == 0 ) printf("GPU Intialization complete. Allocated %.0lf MB of data on GPU.\n", total_sz/1024.0/1024.0 ); | ||
|
||
return GSD; | ||
|
||
} | ||
|
||
SimulationData grid_init_do_not_profile( Inputs in, int mype ) | ||
{ | ||
// Structure to hold all allocated simuluation data arrays | ||
SimulationData SD; | ||
|
||
// Keep track of how much data we're allocating | ||
size_t nbytes = 0; | ||
|
||
// Set the initial seed value | ||
uint64_t seed = 42; | ||
|
||
//////////////////////////////////////////////////////////////////// | ||
// Initialize Nuclide Grids | ||
//////////////////////////////////////////////////////////////////// | ||
|
||
if(mype == 0) printf("Intializing nuclide grids...\n"); | ||
|
||
// First, we need to initialize our nuclide grid. This comes in the form | ||
// of a flattened 2D array that hold all the information we need to define | ||
// the cross sections for all isotopes in the simulation. | ||
// The grid is composed of "NuclideGridPoint" structures, which hold the | ||
// energy level of the grid point and all associated XS data at that level. | ||
// An array of structures (AOS) is used instead of | ||
// a structure of arrays, as the grid points themselves are accessed in | ||
// a random order, but all cross section interaction channels and the | ||
// energy level are read whenever the gridpoint is accessed, meaning the | ||
// AOS is more cache efficient. | ||
|
||
// Initialize Nuclide Grid | ||
SD.length_nuclide_grid = in.n_isotopes * in.n_gridpoints; | ||
SD.nuclide_grid = (NuclideGridPoint *) malloc( SD.length_nuclide_grid * sizeof(NuclideGridPoint)); | ||
SD.d_nuclide_grid = (NuclideGridPoint *) calloc( SD.length_nuclide_grid , sizeof(NuclideGridPoint)); | ||
assert(SD.nuclide_grid != NULL); | ||
nbytes += SD.length_nuclide_grid * sizeof(NuclideGridPoint); | ||
for( int i = 0; i < SD.length_nuclide_grid; i++ ) | ||
{ | ||
SD.nuclide_grid[i].energy = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].total_xs = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].elastic_xs = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].absorbtion_xs = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].fission_xs = LCG_random_double(&seed); | ||
SD.nuclide_grid[i].nu_fission_xs = LCG_random_double(&seed); | ||
} | ||
|
||
// Sort so that each nuclide has data stored in ascending energy order. | ||
for( int i = 0; i < in.n_isotopes; i++ ) | ||
qsort( &SD.nuclide_grid[i*in.n_gridpoints], in.n_gridpoints, sizeof(NuclideGridPoint), NGP_compare); | ||
|
||
#ifdef FORWARD_PASS | ||
memcpy(SD.d_nuclide_grid, SD.nuclide_grid, SD.length_nuclide_grid * sizeof(NuclideGridPoint)); | ||
SD.d_nuclide_grid[0].energy += DELTA; | ||
#endif | ||
// error debug check | ||
/* | ||
for( int i = 0; i < in.n_isotopes; i++ ) | ||
{ | ||
printf("NUCLIDE %d ==============================\n", i); | ||
for( int j = 0; j < in.n_gridpoints; j++ ) | ||
printf("E%d = %lf\n", j, SD.nuclide_grid[i * in.n_gridpoints + j].energy); | ||
} | ||
*/ | ||
|
||
|
||
//////////////////////////////////////////////////////////////////// | ||
// Initialize Acceleration Structure | ||
//////////////////////////////////////////////////////////////////// | ||
|
||
if( in.grid_type == NUCLIDE ) | ||
{ | ||
SD.length_unionized_energy_array = 0; | ||
SD.length_index_grid = 0; | ||
} | ||
|
||
if( in.grid_type == UNIONIZED ) | ||
{ | ||
if(mype == 0) printf("Intializing unionized grid...\n"); | ||
|
||
// Allocate space to hold the union of all nuclide energy data | ||
SD.length_unionized_energy_array = in.n_isotopes * in.n_gridpoints; | ||
SD.unionized_energy_array = (double *) malloc( SD.length_unionized_energy_array * sizeof(double)); | ||
assert(SD.unionized_energy_array != NULL ); | ||
nbytes += SD.length_unionized_energy_array * sizeof(double); | ||
|
||
// Copy energy data over from the nuclide energy grid | ||
for( int i = 0; i < SD.length_unionized_energy_array; i++ ) | ||
SD.unionized_energy_array[i] = SD.nuclide_grid[i].energy; | ||
|
||
// Sort unionized energy array | ||
qsort( SD.unionized_energy_array, SD.length_unionized_energy_array, sizeof(double), double_compare); | ||
|
||
// Allocate space to hold the acceleration grid indices | ||
SD.length_index_grid = SD.length_unionized_energy_array * in.n_isotopes; | ||
SD.index_grid = (int *) malloc( SD.length_index_grid * sizeof(int)); | ||
assert(SD.index_grid != NULL); | ||
nbytes += SD.length_index_grid * sizeof(int); | ||
|
||
// Generates the double indexing grid | ||
int * idx_low = (int *) calloc( in.n_isotopes, sizeof(int)); | ||
assert(idx_low != NULL ); | ||
double * energy_high = (double *) malloc( in.n_isotopes * sizeof(double)); | ||
assert(energy_high != NULL ); | ||
|
||
for( int i = 0; i < in.n_isotopes; i++ ) | ||
energy_high[i] = SD.nuclide_grid[i * in.n_gridpoints + 1].energy; | ||
|
||
for( long e = 0; e < SD.length_unionized_energy_array; e++ ) | ||
{ | ||
double unionized_energy = SD.unionized_energy_array[e]; | ||
for( long i = 0; i < in.n_isotopes; i++ ) | ||
{ | ||
if( unionized_energy < energy_high[i] ) | ||
SD.index_grid[e * in.n_isotopes + i] = idx_low[i]; | ||
else if( idx_low[i] == in.n_gridpoints - 2 ) | ||
SD.index_grid[e * in.n_isotopes + i] = idx_low[i]; | ||
else | ||
{ | ||
idx_low[i]++; | ||
SD.index_grid[e * in.n_isotopes + i] = idx_low[i]; | ||
energy_high[i] = SD.nuclide_grid[i * in.n_gridpoints + idx_low[i] + 1].energy; | ||
} | ||
} | ||
} | ||
|
||
free(idx_low); | ||
free(energy_high); | ||
} | ||
|
||
if( in.grid_type == HASH ) | ||
{ | ||
if(mype == 0) printf("Intializing hash grid...\n"); | ||
SD.length_unionized_energy_array = 0; | ||
SD.length_index_grid = in.hash_bins * in.n_isotopes; | ||
SD.index_grid = (int *) malloc( SD.length_index_grid * sizeof(int)); | ||
assert(SD.index_grid != NULL); | ||
nbytes += SD.length_index_grid * sizeof(int); | ||
|
||
double du = 1.0 / in.hash_bins; | ||
|
||
// For each energy level in the hash table | ||
for( long e = 0; e < in.hash_bins; e++ ) | ||
{ | ||
double energy = e * du; | ||
|
||
// We need to determine the bounding energy levels for all isotopes | ||
for( long i = 0; i < in.n_isotopes; i++ ) | ||
{ | ||
SD.index_grid[e * in.n_isotopes + i] = grid_search_nuclide( in.n_gridpoints, energy, SD.nuclide_grid + i * in.n_gridpoints, 0, in.n_gridpoints-1); | ||
} | ||
} | ||
} | ||
|
||
//////////////////////////////////////////////////////////////////// | ||
// Initialize Materials and Concentrations | ||
//////////////////////////////////////////////////////////////////// | ||
if(mype == 0) printf("Intializing material data...\n"); | ||
|
||
// Set the number of nuclides in each material | ||
SD.num_nucs = load_num_nucs(in.n_isotopes); | ||
SD.length_num_nucs = 12; // There are always 12 materials in XSBench | ||
|
||
// Intialize the flattened 2D grid of material data. The grid holds | ||
// a list of nuclide indices for each of the 12 material types. The | ||
// grid is allocated as a full square grid, even though not all | ||
// materials have the same number of nuclides. | ||
SD.mats = load_mats(SD.num_nucs, in.n_isotopes, &SD.max_num_nucs); | ||
SD.length_mats = SD.length_num_nucs * SD.max_num_nucs; | ||
|
||
// Intialize the flattened 2D grid of nuclide concentration data. The grid holds | ||
// a list of nuclide concentrations for each of the 12 material types. The | ||
// grid is allocated as a full square grid, even though not all | ||
// materials have the same number of nuclides. | ||
SD.concs = load_concs(SD.num_nucs, SD.max_num_nucs); | ||
SD.length_concs = SD.length_mats; | ||
|
||
if(mype == 0) printf("Intialization complete. Allocated %.0lf MB of data on CPU.\n", nbytes/1024.0/1024.0 ); | ||
|
||
return SD; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
Copyright (c) 2012-2019 Argonne National Laboratory | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy of | ||
this software and associated documentation files (the "Software"), to deal in | ||
the Software without restriction, including without limitation the rights to | ||
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of | ||
the Software, and to permit persons to whom the Software is furnished to do so, | ||
subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS | ||
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR | ||
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER | ||
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | ||
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,108 @@ | ||
#include "XSbench_header.cuh" | ||
|
||
int main( int argc, char* argv[] ) | ||
{ | ||
// ===================================================================== | ||
// Initialization & Command Line Read-In | ||
// ===================================================================== | ||
int version = 19; | ||
int mype = 0; | ||
double omp_start, omp_end; | ||
int nprocs = 1; | ||
unsigned long long verification; | ||
|
||
// Process CLI Fields -- store in "Inputs" structure | ||
Inputs in = read_CLI( argc, argv ); | ||
|
||
// Print-out of Input Summary | ||
if( mype == 0 ) | ||
print_inputs( in, nprocs, version ); | ||
|
||
// ===================================================================== | ||
// Prepare Nuclide Energy Grids, Unionized Energy Grid, & Material Data | ||
// This is not reflective of a real Monte Carlo simulation workload, | ||
// therefore, do not profile this region! | ||
// ===================================================================== | ||
|
||
SimulationData SD; | ||
|
||
// If read from file mode is selected, skip initialization and load | ||
// all simulation data structures from file instead | ||
if( in.binary_mode == READ ) | ||
SD = binary_read(in); | ||
else | ||
SD = grid_init_do_not_profile( in, mype ); | ||
|
||
// If writing from file mode is selected, write all simulation data | ||
// structures to file | ||
if( in.binary_mode == WRITE && mype == 0 ) | ||
binary_write(in, SD); | ||
|
||
// Move data to GPU | ||
SimulationData GSD = move_simulation_data_to_device( in, mype, SD ); | ||
|
||
cudaDeviceSetLimit(cudaLimitMallocHeapSize, 1*1024*1024*1024); | ||
|
||
// ===================================================================== | ||
// Cross Section (XS) Parallel Lookup Simulation | ||
// This is the section that should be profiled, as it reflects a | ||
// realistic continuous energy Monte Carlo macroscopic cross section | ||
// lookup kernel. | ||
// ===================================================================== | ||
if( mype == 0 ) | ||
{ | ||
printf("\n"); | ||
border_print(); | ||
center_print("SIMULATION", 79); | ||
border_print(); | ||
} | ||
|
||
// Start Simulation Timer | ||
omp_start = get_time(); | ||
|
||
// Run simulation | ||
if( in.simulation_method == EVENT_BASED ) | ||
{ | ||
if( in.kernel_id == 0 ) | ||
verification = run_event_based_simulation_baseline(in, GSD, mype); | ||
else if( in.kernel_id == 1 ) | ||
verification = run_event_based_simulation_optimization_1(in, GSD, mype); | ||
else if( in.kernel_id == 2 ) | ||
verification = run_event_based_simulation_optimization_2(in, GSD, mype); | ||
else if( in.kernel_id == 3 ) | ||
verification = run_event_based_simulation_optimization_3(in, GSD, mype); | ||
else if( in.kernel_id == 4 ) | ||
verification = run_event_based_simulation_optimization_4(in, GSD, mype); | ||
else if( in.kernel_id == 5 ) | ||
verification = run_event_based_simulation_optimization_5(in, GSD, mype); | ||
else if( in.kernel_id == 6 ) | ||
verification = run_event_based_simulation_optimization_6(in, GSD, mype); | ||
else | ||
{ | ||
printf("Error: No kernel ID %d found!\n", in.kernel_id); | ||
exit(1); | ||
} | ||
} | ||
else | ||
{ | ||
printf("History-based simulation not implemented in CUDA code. Instead,\nuse the event-based method with \"-m event\" argument.\n"); | ||
exit(1); | ||
} | ||
|
||
if( mype == 0) | ||
{ | ||
printf("\n" ); | ||
printf("Simulation complete.\n" ); | ||
} | ||
|
||
// End Simulation Timer | ||
omp_end = get_time(); | ||
|
||
// Final Hash Step | ||
verification = verification % 999983; | ||
|
||
// Print / Save Results and Exit | ||
int is_invalid_result = print_results( in, mype, omp_end-omp_start, nprocs, verification ); | ||
|
||
return is_invalid_result; | ||
} |
Oops, something went wrong.