Skip to content

kamilpiech97/Sulejowek_ColobotTeam_ColoboTree

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Database setup

  1. Run from api
docker-compose up

It will setup the Postgres database.

  1. Run
CREATE EXTENSION postgis;

CREATE TABLE public.area_chunks (
	id serial4 NOT NULL,
	upper_left_vertex_2180 public.geometry(point, 2180) NULL,
	upper_left_vertex_4326 public.geometry(point, 4326) NULL,
	tree_coverage_percentage numeric(10, 2) NULL,
	tree_classification int4 NULL,
	tree_id int4 NULL,
	bottom_right_vertex_2180 public.geometry(point, 2180) NULL,
	bottom_right_vertex_4326 public.geometry(point, 4326) NULL,
	resolution int4 NULL,
	CONSTRAINT area_chunks_pkey PRIMARY KEY (id)
);

CREATE INDEX idx_area_chunks_center_point_2180 ON public.area_chunks USING gist (upper_left_vertex_2180);
CREATE INDEX idx_area_chunks_center_point_4326 ON public.area_chunks USING gist (upper_left_vertext_4326);
CREATE INDEX idx_bottom_right_vertex_2180 ON public.area_chunks USING gist (bottom_right_vertex_2180);
CREATE INDEX idx_bottom_right_vertex_4326 ON public.area_chunks USING gist (bottom_right_vertex_4326);

on database to prepare structure

Data pre-processing

  1. Place the .las (containing the LiDAR data for a selected area) file in the tree-detection/.data folder as example.las (https://1drv.ms/u/s!AoCvYEtZOzNgjsks_gYzZBoPv_yepw?e=Lk1jnR)

  2. Create and activate a virtual environment:

cd tree-detection
python -m venv .venv
source .venv/bin/activate
pip install -r requirements.txt
cd ..
  1. Update the database connection string in the tree-detection/db.py file.

  2. Run the data pre-processing script:

python tree-detection/main.py
  1. Wait for the script to finish. The output will be saved in the database. You will see a data visualization once the process is complete.

API

  1. Run from /api
dotnet run

Frontend

  1. Run from /ui
npm install
npm run dev

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C# 38.5%
  • Vue 29.2%
  • Python 18.0%
  • TypeScript 9.4%
  • Dockerfile 2.1%
  • JavaScript 1.9%
  • Other 0.9%