Skip to content
/ kew Public

πŸš€ Kew - A Fast, Redis-backed Task Queue Manager for Python

License

Notifications You must be signed in to change notification settings

justrach/kew

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

24 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Kew Logo

Kew: Modern Async Task Queue

PyPI Downloads Github Actions

A Redis-backed task queue built for modern async Python applications. Handles background processing with precise concurrency control, priority queues, and circuit breakers - all running in your existing async process.

Why Kew?

Building async applications often means dealing with background tasks. Existing solutions like Celery require separate worker processes and complex configuration. Kew takes a different approach:

  • Runs in Your Process: No separate workers to manage - tasks run in your existing async process
  • True Async: Native async/await support - no sync/async bridges needed
  • Precise Control: Semaphore-based concurrency ensures exact worker limits
  • Simple Setup: Just Redis and a few lines of code to get started

How It Works

Kew manages task execution using a combination of Redis for persistence and asyncio for processing:

graph LR
    A[Application] -->|Submit Task| B[Task Queue]
    B -->|Semaphore Control| C[Worker Pool]
    C -->|Execute Task| D[Task Processing]
    D -->|Success| E[Complete]
    D -->|Error| F[Circuit Breaker]
    F -->|Reset| B
    style A fill:#f9f,stroke:#333
    style B fill:#bbf,stroke:#333
    style C fill:#bfb,stroke:#333
    style D fill:#fbb,stroke:#333
Loading

Tasks flow through several states with built-in error handling:

stateDiagram-v2
    [*] --> Submitted: Task Created
    Submitted --> Queued: Priority Assignment
    Queued --> Processing: Worker Available
    Processing --> Completed: Success
    Processing --> Failed: Error
    Failed --> CircuitOpen: Multiple Failures
    CircuitOpen --> Queued: Circuit Reset
    Completed --> [*]
Loading

Quick Start

  1. Install Kew:
pip install kew
  1. Create a simple task processor:
import asyncio
from kew import TaskQueueManager, QueueConfig

async def process_order(order_id: str):
    # Simulate order processing
    await asyncio.sleep(1)
    return f"Order {order_id} processed"

async def main():
    # Initialize queue manager
    manager = TaskQueueManager(redis_url="redis://localhost:6379")
    await manager.initialize()
    
    # Create processing queue
    await manager.create_queue(QueueConfig(
        name="orders",
        max_workers=4,  # Only 4 concurrent tasks
        max_size=1000
    ))
    
    # Submit some tasks
    tasks = []
    for i in range(10):
        task = await manager.submit_task(
            task_id=f"order-{i}",
            queue_name="orders",
            task_func=process_order,
            order_id=str(i)
        )
        tasks.append(task)
    
    # Check results
    for task in tasks:
        status = await manager.get_task_status(task.task_id)
        print(f"{task.task_id}: {status.result}")

if __name__ == "__main__":
    asyncio.run(main())

Real-World Examples

Async Web Application

from fastapi import FastAPI
from kew import TaskQueueManager, QueueConfig

app = FastAPI()
manager = TaskQueueManager()

@app.on_event("startup")
async def startup():
    await manager.initialize()
    await manager.create_queue(QueueConfig(
        name="emails",
        max_workers=2
    ))

@app.post("/signup")
async def signup(email: str):
    # Handle signup immediately
    user = await create_user(email)
    
    # Queue welcome email for background processing
    await manager.submit_task(
        task_id=f"welcome-{user.id}",
        queue_name="emails",
        task_func=send_welcome_email,
        user_id=user.id
    )
    return {"status": "success"}

Data Processing Script

async def process_batch(items: list):
    manager = TaskQueueManager()
    await manager.initialize()
    
    # Create high and low priority queues
    await manager.create_queue(QueueConfig(
        name="critical",
        max_workers=4,
        priority=QueuePriority.HIGH
    ))
    
    await manager.create_queue(QueueConfig(
        name="batch",
        max_workers=2,
        priority=QueuePriority.LOW
    ))
    
    # Process priority items first
    for item in filter(is_priority, items):
        await manager.submit_task(
            task_id=f"item-{item.id}",
            queue_name="critical",
            task_func=process_item,
            item=item
        )
    
    # Queue remaining items
    for item in filter(lambda x: not is_priority(x), items):
        await manager.submit_task(
            task_id=f"item-{item.id}",
            queue_name="batch",
            task_func=process_item,
            item=item
        )

Key Features

Concurrency Control

# Strictly enforce 4 concurrent tasks max
await manager.create_queue(QueueConfig(
    name="api_calls",
    max_workers=4  # Guaranteed not to exceed
))

Priority Queues

# High priority queue for urgent tasks
await manager.create_queue(QueueConfig(
    name="urgent",
    priority=QueuePriority.HIGH
))

# Lower priority for batch processing
await manager.create_queue(QueueConfig(
    name="batch",
    priority=QueuePriority.LOW
))

Circuit Breakers

# Configure circuit breaker for external API calls
await manager.create_queue(QueueConfig(
    name="api_calls",
    circuit_breaker_max_failures=5,  # Open after 5 failures
    circuit_breaker_reset_timeout=30  # Reset after 30 seconds
))

Task Monitoring

# Check task status
status = await manager.get_task_status("task-123")
print(f"Status: {status.status}")
print(f"Result: {status.result}")
print(f"Error: {status.error}")

# Monitor queue health
queue_status = await manager.get_queue_status("api_calls")
print(f"Active Tasks: {queue_status['current_workers']}")
print(f"Circuit Breaker: {queue_status['circuit_breaker_status']}")

Configuration

Redis Settings

manager = TaskQueueManager(
    redis_url="redis://username:password@hostname:6379/0",
    cleanup_on_start=True  # Optional: clean stale tasks
)

Task Expiration

# Tasks expire after 24 hours by default
# Configure custom expiration:
manager = TaskQueueManager(
    task_expiry_seconds=3600  # 1 hour
)

Error Handling

Kew provides comprehensive error handling:

  • TaskAlreadyExistsError: Task ID already in use
  • TaskNotFoundError: Task doesn't exist
  • QueueNotFoundError: Queue not configured
  • QueueProcessorError: Task processing failed
try:
    await manager.submit_task(...)
except TaskAlreadyExistsError:
    # Handle duplicate task
except QueueProcessorError as e:
    # Handle processing error
    print(f"Task failed: {e}")

Contributing

We welcome contributions! Please check our Contributing Guide for details.

License

MIT License - see the LICENSE file for details.