Skip to content

Commit

Permalink
Remove duplicate Categories section.
Browse files Browse the repository at this point in the history
Fix small typo.
  • Loading branch information
levibostian committed Mar 19, 2014
1 parent dcf7cd6 commit 58bd9cb
Showing 1 changed file with 1 addition and 151 deletions.
152 changes: 1 addition & 151 deletions objective-c.html.markdown
Original file line number Diff line number Diff line change
Expand Up @@ -552,116 +552,6 @@ int main (int argc, const char * argv[]) {
NSLog(@"Car locked."); // Instances of Car can't use lockCar because it's not in the @interface.
}

// Categories
// A category is a group of methods designed to extend a class. They allow you to add new methods
// to an existing class for organizational purposes. This is not to be mistaken with subclasses.
// Subclasses are meant to CHANGE functionality of an object while categories instead ADD
// functionality to an object.
// Categories allow you to:
// -- Add methods to an existing class for organizational purposes.
// -- Allow you to extend Objective-C object classes (ex: NSString) to add your own methods.
// -- Add ability to create protected and private methods to classes.
// NOTE: Do not override methods of the base class in a category even though you have the ability
// to. Overriding methods may cause compiler errors later between different categories and it
// ruins the purpose of categories to only ADD functionality. Subclass instead to override methods.

// Here is a simple Car base class.
@interface Car : NSObject

@property NSString *make;
@property NSString *color;

- (void)turnOn;
- (void)accelerate;

@end

// And the simple Car base class implementation:
#import "Car.h"

@implementation Car

@synthesize make = _make;
@synthesize color = _color;

- (void)turnOn {
NSLog(@"Car is on.");
}
- (void)accelerate {
NSLog(@"Accelerating.");
}

@end

// Now, if we wanted to create a Truck object, we would instead create a subclass of Car as it would
// be changing the functionality of the Car to behave like a truck. But lets say we want to just add
// functionality to this existing Car. A good example would be to clean the car. So we would create
// a category to add these cleaning methods:
// @interface filename: Car+Clean.h (BaseClassName+CategoryName.h)
#import "Car.h" // Make sure to import base class to extend.

@interface Car (Clean) // The category name is inside () following the name of the base class.

- (void)washWindows; // Names of the new methods we are adding to our Car object.
- (void)wax;

@end

// @implementation filename: Car+Clean.m (BaseClassName+CategoryName.m)
#import "Car+Clean.h" // Import the Clean category's @interface file.

@implementation Car (Clean)

- (void)washWindows {
NSLog(@"Windows washed.");
}
- (void)wax {
NSLog(@"Waxed.");
}

@end

// Any Car object instance has the ability to use a category. All they need to do is import it:
#import "Car+Clean.h" // Import as many different categories as you want to use.
#import "Car.h" // Also need to import base class to use it's original functionality.

int main (int argc, const char * argv[]) {
@autoreleasepool {
Car *mustang = [[Car alloc] init];
mustang.color = @"Red";
mustang.make = @"Ford";

[mustang turnOn]; // Use methods from base Car class.
[mustang washWindows]; // Use methods from Car's Clean category.
}
return 0;
}

// Objective-C does not have protected method declarations but you can simulate them.
// Create a category containing all of the protected methods, then import it ONLY into the
// @implementation file of a class belonging to the Car class:
@interface Car (Protected) // Naming category 'Protected' to remember methods are protected.

- (void)lockCar; // Methods listed here may only be created by Car objects.

@end
//To use protected methods, import the category, then implement the methods:
#import "Car+Protected.h" // Remember, import in the @implementation file only.

@implementation Car

- (void)lockCar {
NSLog(@"Car locked."); // Instances of Car can't use lockCar because it's not in the @interface.
}

@end

// Protocols
// A protocol declares methods that can be implemented by any class.
// Protocols are not classes themselves. They simply define an interface
// that other objects are responsible for implementing.
@protocol MyProtocol
- (void)myProtocolMethod;
@end

///////////////////////////////////////
Expand Down Expand Up @@ -760,47 +650,7 @@ if ([myClass conformsToProtocol:@protocol(CarUtilities)]) {
- (void)beNiceToBrother:(id <Brother>)brother;

@end
// The @implementation needs to implement the @properties and methods for the protocol.
@implementation Car : NSObject <CarUtilities>

@synthesize engineOn = _engineOn; // Create a @synthesize statement for the engineOn @property.

- (void)turnOnEngine { // Implement turnOnEngine however you would like. Protocols do not define
_engineOn = YES; // how you implement a method, it just requires that you do implement it.
}
// You may use a protocol as data as you know what methods and variables it has implemented.
- (void)turnOnEngineWithCarUtilities:(id <CarUtilities>)objectOfSomeKind {
[objectOfSomeKind engineOn]; // You have access to object variables
[objectOfSomeKind turnOnEngine]; // and the methods inside.
[objectOfSomeKind engineOn]; // May or may not be YES. Class implements it however it wants.
}

@end
// Instances of Car now have access to the protocol.
Car *carInstance = [[Car alloc] init];
[[carInstance setEngineOn:NO];
[carInstance turnOnEngine];
if ([carInstance engineOn]) {
NSLog(@"Car engine is on."); // prints => "Car engine is on."
}
// Make sure to check if an object of type 'id' implements a protocol before calling protocol methods:
if ([myClass conformsToProtocol:@protocol(CarUtilities)]) {
NSLog(@"This does not run as the MyClass class does not implement the CarUtilities protocol.");
} else if ([carInstance conformsToProtocol:@protocol(CarUtilities)]) {
NSLog(@"This does run as the Car class implements the CarUtilities protocol.");
}
// Categories may implement protocols as well: @interface Car (CarCategory) <CarUtilities>
// You may implement many protocols: @interface Car : NSObject <CarUtilities, CarCleaning>
// NOTE: If two or more protocols rely on each other, make sure to forward-declare them:
#import "Brother.h"

@protocol Brother; // Forward-declare statement. Without it, compiler would through error.

@protocol Sister <NSObject>

- (void)beNiceToBrother:(id <Brother>)brother;

@end
// See the problem is that Sister relies on Brother, and Brother relies on Sister.
#import "Sister.h"

Expand All @@ -816,7 +666,7 @@ if ([myClass conformsToProtocol:@protocol(CarUtilities)]) {
///////////////////////////////////////
// Blocks
///////////////////////////////////////
// Blocks are statements of code, just like a function, that is able to be used as data.
// Blocks are statements of code, just like a function, that are able to be used as data.
// Below is a simple block with an integer argument that returns the argument plus 4.
int (^addUp)(int n); // Declare a variable to store the block.
void (^noParameterBlockVar)(void); // Example variable declaration of block with no arguments.
Expand Down

0 comments on commit 58bd9cb

Please sign in to comment.