Skip to content
This repository has been archived by the owner on Dec 5, 2023. It is now read-only.
/ GSOC2021 Public archive

GSOC2021 information for JuMP

License

Notifications You must be signed in to change notification settings

jump-dev/GSOC2021

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 

Repository files navigation

GSOC2021

JuMP is a modeling interface and a collection of supporting packages for mathematical optimization that is embedded in Julia. With JuMP, users formulate various classes of optimization problems with easy-to-read code, and then solve these problems using state-of-the-art open-source and commercial solvers. JuMP also makes advanced optimization techniques easily accessible from a high-level language.

JuMP will be participating as a sub-organization in NumFOCUS's application for Google Summer of Code 2021. For more information about this application see:

Mentors

Ideas

If you have an idea for GSOC2021, please make a pull request to edit this page.

Multiobjective optimization

Abstract

A key limitation of the current version of JuMP and MathOptInterface is that they are limited to problems with a single scalar objective function. The goal of this project is to relax this requirement so that users can model and solve multi-objective optimization problems.

Priority Involves Mentors
Medium Adding support for vector-valued objective functions to MOI and JuMP Oscar Dowson

Technical Details

Technical details available in this issue

Helpful Experience

  • Knowledge of JuMP and MathOptInterface
  • Knowledge of multi-objective optimization

Steps

Initial steps

Key deliverables

Stretch goal

  • Extend JuMP's @objective macro to work with vector-valued functions.
  • Add support for vOptSolver

Matrix-based representation of optimization problems

Priority Involves Mentors
Medium Implementation of problem matrix representations and integration in solvers Joaquim Dias Garcia, Mathieu Besançon, Benoît Legat

Abstract

Many classes of optimization problems are commonly represented using matrices of parameters:

l ≤ A x ≤ u

These representations can be what optimization solvers require as input or used to transform optimization problems, for example to derive its dual problem or its KKT conditions. We want to develop MatrixOptInterface.jl to federate efforts to build various representations of optimization problems in matrix form.

Technical details

The core of the project will the implementation of matrix representations for optimization problems. These representations can then be used to simplify the code in solver wrappers transforming a MathOptInterface model into structures that are passed to the native solver.

Beyond the implementation of the various matrix forms, this project will lead possibilities to work on various connected packages such as solver wrappers, Dualization.jl, DiffOpt.jl, or ParametricOptInterface.jl.

Helpful Experience

  • Knowledge of mathematical optimization (linear, quadratic optimization, duality)
  • Basic knowledge of MathOptInterface

Steps

Initial steps

  • Read the MathOptInterface manual and get familiar with the data structures used to represent scalar and vector functions
  • Read on the models already implemented in matrix form

Key deliverables

  • Implement various forms for linear, conic and quadratic optimization problems in MatrixOptInterface
  • Design user-oriented documentation for building and consuming the various problem formats
  • Replace the conversion code from MOI structures in solvers with the MatrixOptInterface implementation

Stretch goals

  • Integrate MatrixOptInterface in ParametricOptInterface, Dualization.jl, DiffOpt.jl, BilevelJuMP.jl

Chordal decomposition of SDP

Abstract

Chordal decomposition is a key step in the formulation of sparse SDP. Implementations are already available in SumOfSquares and COSMO.

Priority Involves Mentors
Medium Creating Chordal extension and decomposition packages Joaquim Dias Garcia, Benoît Legat, Theo Diamandis

Abstract

Many semidefinite problems are sparse and exploiting this sparsity can significantly reduce the computation time and memory needed to solve the problem.

The goal of this project is to refactor existing implementation of chordal sparsity reduction into a MathOptInterface layer that is easy to plug into any SDP solver as a transformation layer.

Technical details

Chordal decomposition and PSD matrix completion for SDPs are not currently accessible through MathOptInterface. The core goal of this project is to create an MOI layer for chordal decomposition and allow these capabilities to be easy options from JuMP that work with any SDP solver. Then, this package will be used to create sparse SDP examples for JuMP, drawing from several application areas. Finally, there is the possibility of working on improvements to chordal graph algorithms themselves.

Helpful Experience

  • Knowledge of mathematical optimization (semidefinite programming)
  • Knowledge of graph theory and chordal graphs (see Chordal Graphs and Semidefinite Optimization by Lieven Vandenberghe and Martin S. Andersen)
  • Basic knowledge of MathOptInterface

Steps

Initial steps

Key deliverables

  • Create a ChordalOptInterface.jl package an MOI layer doing chordal sparsity decomposition
  • Allow chordal decomposition to be an easy to use option from JuMP that works with any semidefinite solver
  • Add examples that use chordal decomposition to solve large-scale sparse semidefinite programs in applications of interest

Stretch goals

  • Improve algorithms for chordal decomposition in the currently-under-development ChordalDecomp.jl

About

GSOC2021 information for JuMP

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published