Skip to content

juliannowakowski/lwe_with_hints

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LWE with Hints

An efficient Python library for attacking LWE with hints, accompanying the paper

Too Many Hints – When LLL Breaks LWE.

Requirements

We note that all required libraries ship with Sage. (However, fpylll can be very slow in Sage, when not upgrading to the latest fpylll version, see fplll/fpylll#239.)

If you want to run the library in Sage, then you have run Sage in its Python mode. For instance, to run tutorial.py in Sage, simply execute the following command:

sage --python tutorial.py

The code is written for Python 3.x / Sage 9.x.

Tutorial

Getting started

We import the library and load an LWE instance from tutorial/lwe_instance.json.

>>> from lwe_with_hints import *
>>> A,b,q = loadLWEInstanceFromFile("tutorial/lwe_instance.json")

As the following code snippet shows, our LWE instance has parameters n = 70, m = 80, q = 521.

>>> A.shape
(70,80)
>>> q
521

Let us first attack the LWE instance without hints. To this end, we create an LWELattice object and run the (progressive) BKZ lattice reduction algorithm on it.

>>> lattice = LWELattice(A,b,q)
>>> lattice.reduce()

Executing the above code should take roughly 1 - 2 minutes on a laptop.

When execution is finished, the LWE secret is stored in lattice.s.

>>> lattice.s
array([ 0,  0,  2,  1,  2, -1, -1,  0, -1,  1,  1,  1,  0,  1,  1, -3, -2,
       -2, -3, -1,  1,  1, -1,  2, -1,  0, -2,  0,  1,  0,  0,  0,  1,  0,
        1,  0,  0,  0,  0,  0,  1,  0,  0,  0, -1,  0, -1, -1, -1,  1,  1,
        1,  0,  0,  0,  0,  2,  1,  0, -1,  1, -2,  0,  0, -2,  0,  1,  0,
       -1,  0])

The shortest vector, that was recovered by lattice reduction, is stored in lattice.shortestVector.

>>> lattice.shortestVector
array([ 2, -1,  1,  1,  0, -2,  2,  2,  0, -1,  1, -1,  0,  0,  0,  0,  1,
       -2,  0, -2,  2, -3,  0, -1,  0,  0, -1, -1, -1, -1, -1,  1, -1, -2,
        2,  1,  1,  1,  0,  0, -1,  0, -1,  2,  2,  1,  0, -1,  0,  0, -1,
       -1, -1, -1, -1,  1,  1,  1,  1, -1,  1,  1,  1,  1,  0,  3,  0,  1,
        1,  0,  0, -2, -1,  0,  0,  1,  2, -2, -1,  1,  0,  0, -2, -1, -2,
        1,  1,  0,  1, -1, -1, -1,  0, -1, -1,  3,  2,  2,  3,  1, -1, -1,
        1, -2,  1,  0,  2,  0, -1,  0,  0,  0, -1,  0, -1,  0,  0,  0,  0,
        0, -1,  0,  0,  0,  1,  0,  1,  1,  1, -1, -1, -1,  0,  0,  0,  0,
       -2, -1,  0,  1, -1,  2,  0,  0,  2,  0, -1,  0,  1,  0,  1])

The BKZ blocksize, at which the LWE secret was successfully recovered, is stored in lattice.successBlocksize.

>>> lattice.successBlocksize
5

Integrating hints

Now let us attack the LWE instance again, but this time with hints.

Let us first reset the LWELattice object.

>>> lattice = LWELattice(A,b,q)

Suppose we obtain the following hints via some side channel.

  1. The first four coordinates of the LWE secret are 0, 0, 2 and 1.
  2. The inner product between the LWE secret and the following two vectors equals -1670 and 2381, respectively:
(-459, -441, 107, -207, 30, 358, -221, -483, 457, 96, 118, -241, 400, -478, 374, -46, -376, 415, 213, 476, -195, 25, -486, 444, 228, 313, -252, -182, -314, 105, -248, 163, 489, -388, 222, 110, -493, -491, 378, 213, 493, 48, 497, 138, 441, 140, 351, 135, -123, 414, -7, -344, -320, 54, 400, 230, -80, -85, -76, -475, 342, 276, 340, 1, 477, 158, -378, 146, 274, -355)
(-315, 212, 432, 236, 423, -389, 67, -313, 365, 416, -180, -121, -472, 56, -468, -234, -305, 173, 444, -348, 261, -120, 249, -466, 491, -349, -140, 49, 99, 383, -321, 127, 447, -199, 443, -89, -384, -102, -106, 253, 495, 500, 8, -354, 115, 488, -88, 471, -291, 323, 349, 68, -253, -35, 34, -175, 172, -162, 123, -266, -6, 321, 481, -116, -60, 227, 163, -24, 56, 114)
  1. The sum over all coordinates of the LWE secret is an even number.

We integrate the hints as follows. (Note: vec is simply an alias for numpy.array)

>>> n = 70
>>> v_1 = vec( [1] + [0]*(n-1) )
>>> v_2 = vec( [0] + [1] + [0]*(n-2) )
>>> v_3 = vec( [0]*2 + [1] + [0]*(n-3) )
>>> v_4 = vec( [0]*3 + [1] + [0]*(n-4) )
>>> v_5 = vec( [-459, -441, 107, -207, 30, 358, -221, -483, 457, 96, 118, -241, 400, -478, 374, -46, -376, 415, 213, 476, -195, 25, -486, 444, 228, 313, -252, -182, -314, 105, -248, 163, 489, -388, 222, 110, -493, -491, 378, 213, 493, 48, 497, 138, 441, 140, 351, 135, -123, 414, -7, -344, -320, 54, 400, 230, -80, -85, -76, -475, 342, 276, 340, 1, 477, 158, -378, 146, 274, -355] )
>>> v_6 = vec( [-315, 212, 432, 236, 423, -389, 67, -313, 365, 416, -180, -121, -472, 56, -468, -234, -305, 173, 444, -348, 261, -120, 249, -466, 491, -349, -140, 49, 99, 383, -321, 127, 447, -199, 443, -89, -384, -102, -106, 253, 495, 500, 8, -354, 115, 488, -88, 471, -291, 323, 349, 68, -253, -35, 34, -175, 172, -162, 123, -266, -6, 321, 481, -116, -60, 227, 163, -24, 56, 114] )
>>> v_7 = vec( [1]*n )
>>> 
>>> lattice.integratePerfectHint( v_1, 0 ) #Coordinates
>>> lattice.integratePerfectHint( v_2, 0 )
>>> lattice.integratePerfectHint( v_3, 2 )
>>> lattice.integratePerfectHint( v_4, 1 )
>>> lattice.integratePerfectHint( v_5, -1670 ) #Inner products
>>> lattice.integratePerfectHint( v_6, 2381 )
>>> lattice.integrateModularHint( v_7, 0, 2 ) #Sum over all coordinates is even

Integrating the hints reduces the security of our LWE instance. When now running BKZ on the lattice, the secret will be recovered significantly faster. The required runtime on a laptop is roughly half a minute, and the required BKZ blocksize is 3.

>>> lattice.reduce()
>>> lattice.successBlocksize
3
>>> lattice.s
array([ 0,  0,  2,  1,  2, -1, -1,  0, -1,  1,  1,  1,  0,  1,  1, -3, -2,
       -2, -3, -1,  1,  1, -1,  2, -1,  0, -2,  0,  1,  0,  0,  0,  1,  0,
        1,  0,  0,  0,  0,  0,  1,  0,  0,  0, -1,  0, -1, -1, -1,  1,  1,
        1,  0,  0,  0,  0,  2,  1,  0, -1,  1, -2,  0,  0, -2,  0,  1,  0,
       -1,  0])

Generating LWE instances

Our library implements key generation algrotihms for various LWE-/NTRU-based schemes. To generate an LWE instance (A,b,q) with secret s and error e, simply run

>>> A,b,q,s,e = generateLWEInstance(scheme)

where scheme can be any of the following strings:

  • "Kyber512", "Kyber768", "Kyber1024",
  • "Dilithium2", "Dilithium3", "Dilithium5",
  • "Falcon2", "Falcon4", "Falcon8", "Falcon16", "Falcon32", "Falcon64", "Falcon128", "Falcon256", "Falcon512", "Falcon1024",
  • "NTRU-HPS-509", "NTRU-HPS-677", "NTRU-HPS-821", "NTRU-HRSS".

Additionally, one can generate Kyber-like toy instances, where both secret and error follow a binomial distribtuion with parameter eta, as follows:

A,b,q,s,e = generateToyInstance(n,m,q,eta)

Disclaimer: Our key generation algorithms are not suitable for production enviroments!

Reproducing experiments from the paper

To recreate our experiments for perfect hints, please run the following commands:

python3 experiments.py Kyber512 -hints="192:256:1" -trials=32
python3 experiments.py Kyber512 -hints="220:256:1" -trials=32 -centered
python3 experiments.py Kyber768 -hints="359:390:1" -trials=32
python3 experiments.py Falcon512 -hints="220:256:1" -trials=32
python3 experiments.py NTRU-HRSS -hints="310:350:1" -trials=32
python3 experiments.py Dilithium2 -hints="440:503:4" -trials=16

To recreate our experiments for modular hints, please run the following commands:

python3 experiments.py Kyber512 -hints="440:455:1" -trials=16 -modular
python3 experiments.py Falcon512 -hints="440:455:1" -trials=16 -modular
python3 experiments.py NTRU-HRSS -hints="610:625:1" -trials=16 -modular
python3 experiments.py Kyber768 -hints="690:705:1" -trials=16 -modular
python3 experiments.py Dilithium2 -hints="870:885:1" -trials=16 -modular

If you want to run the experiments in verbose mode, simply add the flag -verbose to the above commands.

Acknowledgments

For generating Falcon keys we use Thomas Prest's great falcon.py library.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages