This is the implementation of the paper "Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features" by J. Min, J. Lee, J. Ponce and M. Cho. Implemented on Python 3.6 and Pytorch 1.0.1.
For more information, check out project [website] and the paper on [arXiv].
conda create -n hpf python=3.6
conda activate hpf
cat /usr/local/cuda/version.txt
conda install pytorch=1.0.1 torchvision cudatoolkit=10.0 -c pytorch (if CUDA 10)
conda install pytorch=1.0.1 torchvision cudatoolkit=9.0 -c pytorch (if CUDA 9)
conda install -c anaconda scikit-image
conda install -c anaconda pandas
conda install -c anaconda requests
conda install pillow=6.1
pip install gluoncv-torch
Beam search on SPair-71k validation set:
python beamsearch.py --dataset spair --thres bbox --backbone resnet50
python beamsearch.py --dataset spair --thres bbox --backbone resnet101
Beam search on PF-PASCAL validation set:
python beamsearch.py --dataset pfpascal --thres bbox --backbone resnet50
python beamsearch.py --dataset pfpascal --thres bbox --backbone resnet101
Results on PF-PASCAL: (PCK: 83.4%, 84.8%, 88.3%)
python evaluate.py --dataset pfpascal --backbone resnet50 --hyperpixel '(2,7,11,12,13)'
python evaluate.py --dataset pfpascal --backbone resnet101 --hyperpixel '(2,17,21,22,25,26,28)'
python evaluate.py --dataset pfpascal --backbone fcn101 --hyperpixel '(2,4,5,18,19,20,24,32)'
Results on PF-WILLOW: (PCK: 74.4%)
python evaluate.py --dataset pfwillow --backbone resnet101 --hyperpixel '(2,17,21,22,25,26,28)'
Results on Caltech-101: (LT-ACC: 0.88, IoU: 0.64)
python evaluate.py --dataset caltech --backbone resnet50 --hyperpixel '(2,7,11,12,13)'
Results on SPair-71k: (PCK: 27.2%, 28.2%)
python evaluate.py --dataset spair --backbone resnet50 --hyperpixel '(0,9,10,11,12,13)'
python evaluate.py --dataset spair --backbone resnet101 --hyperpixel '(0,8,20,21,26,28,29,30)'
To visualize predictions using TPS transformation, add command line argument --visualize:
python evaluate.py --visualize
If you use this code and SPair-71k dataset for your research, please consider citing:
@InProceedings{min2019hyperpixel,
title={Hyperpixel Flow: Semantic Correspondence with Multi-layer Neural Features},
author={Juhong Min and Jongmin Lee and Jean Ponce and Minsu Cho},
booktitle={ICCV},
year={2019}
}
@article{min2019spair,
title={SPair-71k: A Large-scale Benchmark for Semantic Correspondence},
author={Juhong Min and Jongmin Lee and Jean Ponce and Minsu Cho},
journal={arXiv prepreint arXiv:1908.10543},
year={2019}
}