Skip to content

jshin49/ds2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Dialogue Summaries as Dialogue States (DS2)

Updates: We release the T5 models as anonymity period is over.

Paper link: https://arxiv.org/abs/2203.01552

Citation

@inproceedings{shin-etal-2022-dialogue,
    title = "Dialogue Summaries as Dialogue States ({DS}2), Template-Guided Summarization for Few-shot Dialogue State Tracking",
    author = "Shin, Jamin  and
      Yu, Hangyeol  and
      Moon, Hyeongdon  and
      Madotto, Andrea  and
      Park, Juneyoung",
    booktitle = "Findings of the Association for Computational Linguistics: ACL 2022",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.findings-acl.302",
    pages = "3824--3846",
    abstract = "Annotating task-oriented dialogues is notorious for the expensive and difficult data collection process. Few-shot dialogue state tracking (DST) is a realistic solution to this problem. In this paper, we hypothesize that dialogue summaries are essentially unstructured dialogue states; hence, we propose to reformulate dialogue state tracking as a dialogue summarization problem. To elaborate, we train a text-to-text language model with synthetic template-based dialogue summaries, generated by a set of rules from the dialogue states. Then, the dialogue states can be recovered by inversely applying the summary generation rules. We empirically show that our method DS2 outperforms previous works on few-shot DST in MultiWoZ 2.0 and 2.1, in both cross-domain and multi-domain settings. Our method also exhibits vast speedup during both training and inference as it can generate all states at once.Finally, based on our analysis, we discover that the naturalness of the summary templates plays a key role for successful training.",
}

How to use the code

  1. Installing the directory as pip will resolve all path issues
pip install -e .
pip install -r requirements.txt # requires python 3.8
  1. Get MWOZ data (for 2.0 change all 2.1 to 2.0)

For 2.0

python scripts/create_data_mwoz.py --mwz_ver=2.0 --main_dir=data_mwoz_2.0 --target_path=data_mwoz_2.0/mwz

For 2.1

python scripts/create_data_mwoz.py --mwz_ver=2.1 --main_dir=data_mwoz_2.1 --target_path=data_mwoz_2.1/mwz
  1. Training and Inference - Cross-domain

Pre-training

Example using T5 on Cross-domain pre-training. Note that this code will not work yet because we did not release our pretrained model checkpoints yet due to anonymity issues. We will release the checkpoints upon de-anonymization of the paper. Hence, we recommend using the following options to check our code.

We have uploaded the T5 pre-trained on Dialogue Summarization model on HuggingFace Model Hub at https://huggingface.co/jaynlp/t5-large-samsum. Now you can choose between BART and T5 as such:

  • model_name=bart and model_checkpoint=Salesforce/bart-large-xsum-samsum
  • model_name=t5 and model_checkpoint=jaynlp/t5-large-samsum
CUDA_VISIBLE_DEVICES={gpu} python ds2/scripts/train_ds2.py \
    --dev_batch_size=8 \
    --test_batch_size=8 \
    --train_batch_size=2 \
    --n_epochs=100 \
    --num_beams=1 \
    --test_num_beams=1 \
    --val_check_interval=1.0 \
    --fewshot=0.01 \
    --grad_acc_steps=1 \
    --model_name=bart \
    --model_checkpoint=Salesforce/bart-large-xsum-samsum \
    --except_domain=attraction \
    --mode=finetune \
    --exp_name=bart-CD-1-Attr-pre \
    --seed=577 \
    --version=2.1

Fine-tuning

CUDA_VISIBLE_DEVICES={gpu} python ds2/scripts/train_ds2.py \
    --dev_batch_size=8 \
    --test_batch_size=8 \
    --train_batch_size=2 \
    --n_epochs=100 \
    --num_beams=1 \
    --test_num_beams=1 \
    --val_check_interval=1.0 \
    --fewshot=0.01 \
    --grad_acc_steps=1 \
    --model_name=bart \
    --model_checkpoint=Salesforce/bart-large-xsum-samsum \
    --only_domain=attraction \
    --mode=finetune \
    --load_pretrained={bart-CD-1-Attr-pre/ckpt_path} \
    --exp_name=bart-CD-1-Attr \
    --seed=577 \
    --version=2.1
  1. Training and Inference - Multi-domain
CUDA_VISIBLE_DEVICES={gpu} python ds2/scripts/train_ds2.py \
    --dev_batch_size=8 \
    --test_batch_size=8 \
    --train_batch_size=2 \
    --n_epochs=100 \
    --num_beams=1 \
    --test_num_beams=1 \
    --val_check_interval=1.0 \
    --fewshot=0.01 \
    --grad_acc_steps=1 \
    --model_name=bart \
    --model_checkpoint=Salesforce/bart-large-xsum-samsum \
    --mode=finetune \
    --exp_name=bart-MD-1 \
    --seed=577 \
    --version=2.1
  1. Training and Inference - Cross-task
CUDA_VISIBLE_DEVICES={gpu} python ds2/scripts/train_ds2.py \
    --dev_batch_size=8 \
    --test_batch_size=8 \
    --train_batch_size=2 \
    --n_epochs=100 \
    --num_beams=1 \
    --test_num_beams=1  \
    --val_check_interval=1.0 \
    --fewshot=0.01 \
    --grad_acc_steps=1 \
    --model_name=bart \
    --model_checkpoint=Salesforce/bart-large-xsum-samsum \
    --mode=finetune  \
    --only_domain=attraction \
    --exp_name=bart-CT-Attr-1 \
    --seed=577 \
    --version=2.1

About

Code for DS2 paper

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages