Implementation of Variational Saccading: Efficient Inference for Large Resolution Images.
If you use this code or the ideas therein please cite:
@article{ramapuram2018variational,
title={Variational Saccading: Efficient Inference for Large Resolution Images},
author={Ramapuram, Jason and Diephuis, Maurits and Frantzeska, Lavda and Webb, Russ and Kalousis, Alexandros},
journal={BMVC},
year={2019}
}
The following runs a smaller version of the Two-Digit-Cluttered MNIST problem from the paper (images are 100x100).
Be sure to spinup a visdom server and change YOUR_VISDOM_URL
and YOUR_VISDOM_PORT
below to match your IP/hostname and port.
Clone the repo with submodules: git clone --recursive https://github.com/jramapuram/variational_saccading
and run the following from the downloaded repo:
sh ./docker/run.sh "python main.py --seed=1234 --max-time-steps=4 --synthetic-upsample-size=100 \
--downsample-scale=6 --window-size=64 --epochs=2000 --task=clutter --data-dir=/cluttered_mnist \
--visdom-url=http://YOUR_VISDOM_URL --visdom-port=YOUR_VISDOM_PORT --lr=1e-05 --clip=0.25 \
--latent-size=256 --max-image-percentage=0.3 --dense-normalization=none \
--conv-normalization=batchnorm --batch-size=100 --reparam-type=isotropic_gaussian \
--nll-type=bernoulli --encoder-layer-type=resnet --decoder-layer-type=dense \
--continuous-size=6 --optimizer=adam --use-noisy-rnn-state --activation=elu \
--disable-gated --kl-reg=5.0 --ngpu=1 --uid=saccadingExp1"