-
-
Notifications
You must be signed in to change notification settings - Fork 8
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #212 from jorenham/optimize.direct
`optimize`: fix and complete `direct`
- Loading branch information
Showing
1 changed file
with
27 additions
and
28 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,40 +1,39 @@ | ||
from collections.abc import Callable, Iterable | ||
from typing import Any, type_check_only | ||
from collections.abc import Callable | ||
from typing import Concatenate | ||
|
||
import numpy as np | ||
import numpy.typing as npt | ||
import optype.numpy as onp | ||
from scipy._typing import Untyped | ||
from ._constraints import Bounds | ||
from ._optimize import OptimizeResult | ||
from ._optimize import OptimizeResult as _OptimizeResult | ||
|
||
__all__ = ["direct"] | ||
|
||
ERROR_MESSAGES: tuple[str, ...] = ... | ||
SUCCESS_MESSAGES: tuple[str, ...] = ... | ||
|
||
@type_check_only | ||
class _OptimizeResult(OptimizeResult): | ||
message: str | ||
success: bool | ||
class OptimizeResult(_OptimizeResult): | ||
x: onp.Array1D[np.float64] | ||
fun: float | np.float64 | ||
status: int | ||
fun: float | ||
x: onp.ArrayND[np.float64] # 1d | ||
nit: int | ||
success: bool | ||
message: str | ||
nfev: int | ||
nit: int | ||
|
||
### | ||
|
||
ERROR_MESSAGES: tuple[str, str, str, str, str, str, str, str, str, str, str] = ... | ||
SUCCESS_MESSAGES: tuple[str, str, str] = ... | ||
|
||
def direct( | ||
func: Callable[[npt.ArrayLike, tuple[Any]], float], | ||
bounds: Iterable[float] | Bounds, | ||
func: Callable[Concatenate[onp.Array1D[np.float64], ...], onp.ToFloat], | ||
bounds: tuple[onp.ToFloat1D, onp.ToFloat1D] | Bounds, | ||
*, | ||
args: tuple[Untyped, ...] = (), | ||
eps: float = 0.0001, | ||
maxfun: int | None = None, | ||
maxiter: int = 1000, | ||
locally_biased: bool = True, | ||
f_min: float = ..., | ||
f_min_rtol: float = 0.0001, | ||
vol_tol: float = 1e-16, | ||
len_tol: float = 1e-06, | ||
callback: Callable[[npt.ArrayLike], None] | None = None, | ||
) -> _OptimizeResult: ... | ||
args: tuple[object, ...] = (), | ||
eps: onp.ToFloat = 1e-4, | ||
maxfun: onp.ToJustInt | None = None, | ||
maxiter: onp.ToJustInt = 1000, | ||
locally_biased: onp.ToBool = True, | ||
f_min: onp.ToFloat = ..., | ||
f_min_rtol: onp.ToFloat = 0.0001, | ||
vol_tol: onp.ToFloat = 1e-16, | ||
len_tol: onp.ToFloat = 1e-06, | ||
callback: Callable[[onp.ToArray1D], None] | None = None, | ||
) -> OptimizeResult: ... |