Skip to content

Fork of StaySense's Fast cosine similarity (vector scoring) ElasticSearch 6.4+ Plugin

License

Notifications You must be signed in to change notification settings

joar/fast-cosine-similarity

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

alt text

StaySense - Fast Cosine Similarity ElasticSearch Plugin

Extremely fast vector scoring on ElasticSearch 6.4.x+ using vector embeddings.

About StaySense: StaySense is a revolutionary software company creating the most advanced marketing software ever made publicly available for Hospitality Managers in the Vacation Rental and Hotel Industries.

Company Website: http://staysense.com

Fast Elasticsearch Vector Scoring

This Plugin allows you to score Elasticsearch documents based on embedding-vectors, using dot-product or cosine-similarity at break neck speeds.

General

  • This plugin was ported from This elasticsearch 5.x vector scoring plugin and this discussion and lior-k's original contribution for ElasticSearch 5.5+ to achieve lightning fast result times when searching across millions of documents.
  • This port is for ElasticSearch 6.4+ utilizing the ScoreScript class which was officially split from SearchScript and thus incompatible < 6.4.x

Improvements

  • lior-k's implementation had some confusing variable assignments that did not consistently match with Cosine-Sim's mathematical definition. This has been updated in the code to more accurately reflect the mathematical definition.
  • Null pointer exceptions are now skipped (e.g. a document doesn't have a vector to compare against) allowing queries to complete successfully even in sparse datasets.
  • Ported for latest version of ElasticSearch.
  • Issues and Pull-Requests welcomed!

Elasticsearch version

  • Currently designed for Elasticsearch 6.4.x+
  • Plugin is NOT backwards compatible (see note above about ScoreScript class)
  • Will succesfully build for 6.4.0 and 6.4.1 (latest). Simply modify pom.xml with the correct version then follow maven build steps below.

Maven Build Steps

  • Clone the project
  • mvn package to compile the plugin as a zip file
  • In Elasticsearch run elasticsearch-plugin install file:/PATH_TO_ZIP to install plugin

Why embeddings?

  • Ultimately, by defining the field mapping as a binary value, by storing an embedded version of the vector you are able to take advantage of Lucene's direct API to achieve direct byte access without transformation.
  • When creating the document, Lucene encodes the embedding directly to binary, making read access blazing fast on the search side.
  • Does Lucene do the same with non-embedded vectors? Unsure, but the plugin supports that too if you want to store in [1.2934, -2.0349, ...., .039] format and try!

Usage

Documents

  • Each document you score should have a field containing the base64 representation of your vector. for example:
   {
   	"_id": 1,
   	....
   	"embeddedVector": "v7l48eAAAAA/s4VHwAAAAD+R7I5AAAAAv8MBMAAAAAA/yEI3AAAAAL/IWkeAAAAAv7s480AAAAC/v6DUgAAAAL+wJi0gAAAAP76VqUAAAAC/sL1ZYAAAAL/dyq/gAAAAP62FVcAAAAC/tQRvYAAAAL+j6ycAAAAAP6v1KcAAAAC/bN5hQAAAAL+u9ItAAAAAP4ckTsAAAAC/pmkjYAAAAD+cYpwAAAAAP5renEAAAAC/qY0HQAAAAD+wyYGgAAAAP5WrCcAAAAA/qzjTQAAAAD++LBzAAAAAP49wNKAAAAC/vu/aIAAAAD+hqXfAAAAAP4FfNCAAAAA/pjC64AAAAL+qwT2gAAAAv6S3OGAAAAC/gfMtgAAAAD/If5ZAAAAAP5mcXOAAAAC/xYAU4AAAAL+2nlfAAAAAP7sCXOAAAAA/petBIAAAAD9soYnAAAAAv5R7X+AAAAC/pgM/IAAAAL+ojI/gAAAAP2gPz2AAAAA/3FonoAAAAL/IHg1AAAAAv6p1SmAAAAA/tvKlQAAAAD/I2OMAAAAAP3FBiCAAAAA/wEd8IAAAAL94wI9AAAAAP2Y1IIAAAAA/rnS4wAAAAL9vriVgAAAAv1QxoCAAAAC/1/qu4AAAAL+inZFAAAAAv7aGA+AAAAA/lqYVYAAAAD+kNP0AAAAAP730BiAAAAA="
   }
  • Use this field mapping:
      "embeddedVector": {
        "type": "binary",
        "doc_values": true
      }
  • The vector can be of any dimension

Converting a vector to Base64

to convert an array of doubles to a base64 string we use these example methods:

Java

public static final String convertArrayToBase64(double[] array) {
	final int capacity = 8 * array.length;
	final ByteBuffer bb = ByteBuffer.allocate(capacity);
	for (int i = 0; i < array.length; i++) {
		bb.putDouble(array[i]);
	}
	bb.rewind();
	final ByteBuffer encodedBB = Base64.getEncoder().encode(bb);
	return new String(encodedBB.array());
}

public static double[] convertBase64ToArray(String base64Str) {
	final byte[] decode = Base64.getDecoder().decode(base64Str.getBytes());
	final DoubleBuffer doubleBuffer = ByteBuffer.wrap(decode).asDoubleBuffer();

	final double[] dims = new double[doubleBuffer.capacity()];
	doubleBuffer.get(dims);
	return dims;
}

Python

import base64
import numpy as np

dbig = np.dtype('>f8')

def decode_float_list(base64_string):
    bytes = base64.b64decode(base64_string)
    return np.frombuffer(bytes, dtype=dbig).tolist()

def encode_array(arr):
    base64_str = base64.b64encode(np.array(arr).astype(dbig)).decode("utf-8")
    return base64_str

Querying

Querying with encodings

  • Query for documents based on their cosine similarity:

    For ES 6.4.x:

{
  "query": {
    "function_score": {
    "boost_mode" : "replace",
        "functions": [
          {
            "script_score": {
              "script": {
                  "source": "staysense",
                  "lang" : "fast_cosine",
                  "params": {
                      "field": "embeddedVector",
                      "cosine": true,
                      "encoded_vector" : "v+kopYAAAAA/wivkYAAAAD+wfJeAAAAAv8DL4QAAAAA/waYiwAAAAL+zAmvAAAAAv8c+aiAAAAC/07MyQAAAAL+ccr9AAAAAP9feCOAAAAC/y+ivYAAAAL/R34XgAAAAv+G8nuAAAAA/09hlwAAAAL/MkSWAAAAAP9EXn4AAAAC/zBBxYAAAAD/UY+3AAAAAP7zQSkAAAAC/zRijgAAAAA=="
                  }
              }
            }
          }
        ]
    }
  }
}
  • The example above shows a vector of 64 dimensions
  • Parameters:
    1. field: The document field containing the base64 vector to compare against.
    2. cosine: Boolean. if true - use cosine-similarity, else use dot-product.
    3. encoded_vector: The encoded vector to compare to.

Querying with vectors

  • Query for documents based on their cosine similarity:

    For ES 6.4.x:

{
  "query": {
    "function_score": {
    "boost_mode" : "replace",
        "functions": [
          {
            "script_score": {
              "script": {
                  "source": "staysense",
                  "lang" : "fast_cosine",
                  "params": {
                      "field": "embeddedVector",
                      "cosine": true,
                      "vector" : [
                      -0.09217305481433868, 0.010635560378432274, -0.02878434956073761, ... , 0.08279753476381302
                      ]
                  }
              }
            }
          }
        ]
    }
  }
}
  • The example above shows a vector of 64 dimensions
  • Parameters:
    1. field: The document field containing the base64 vector to compare against.
    2. cosine: Boolean. if true - use cosine-similarity, else use dot-product.
    3. vector: The comma separated non-encoded vector to compare to.

About

Fork of StaySense's Fast cosine similarity (vector scoring) ElasticSearch 6.4+ Plugin

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages