Run embedding models locally in Swift
using MLTensor
.
Inspired by mlx-embeddings.
Some of the supported models on Hugging Face
:
- sentence-transformers/all-MiniLM-L6-v2
- sentence-transformers/msmarco-bert-base-dot-v5
- thenlper/gte-base
- google-bert/bert-base-uncased
NOTE: google-bert/bert-base-uncased
is supported but weightKeyTransform
must be provided:
let modelBundle = try await Bert.loadModelBundle(from: modelId, weightKeyTransform: Bert.googleWeightsKeyTransform)
Some of the supported models on Hugging Face
:
- sentence-transformers/paraphrase-multilingual-mpnet-base-v2
- tomaarsen/xlm-roberta-base-multilingual-en-ar-fr-de-es-tr-it
NOTE: only text encoding is supported for now.
Some of the supported models on Hugging Face
:
NOTE: it's a word embedding model. It loads and keeps the whole model in memory.
For the more memory efficient solution, you might want to use SQLiteVec.
Some of the supported models on Hugging Face
:
- jkrukowski/glove-twitter-25
- jkrukowski/glove-twitter-50
- jkrukowski/glove-twitter-100
- jkrukowski/glove-twitter-200
Add the following to your Package.swift
file. In the package dependencies add:
dependencies: [
.package(url: "https://github.com/jkrukowski/swift-embeddings", from: "0.0.7")
]
In the target dependencies add:
dependencies: [
.product(name: "Embeddings", package: "swift-embeddings")
]
import Embeddings
// load model and tokenizer from Hugging Face
let modelBundle = try await Bert.loadModelBundle(
from: "sentence-transformers/all-MiniLM-L6-v2"
)
// encode text
let encoded = modelBundle.encode("The cat is black")
let result = await encoded.cast(to: Float.self).shapedArray(of: Float.self).scalars
// print result
print(result)
import Embeddings
import MLTensorUtils
let texts = [
"The cat is black",
"The dog is black",
"The cat sleeps well"
]
let modelBundle = try await Bert.loadModelBundle(
from: "sentence-transformers/all-MiniLM-L6-v2"
)
let encoded = modelBundle.batchEncode(texts)
let distance = cosineDistance(encoded, encoded)
let result = await distance.cast(to: Float.self).shapedArray(of: Float.self).scalars
print(result)
To run the command line demo, use the following command:
swift run embeddings-cli <subcommand> [--model-id <model-id>] [--model-file <model-file>] [--text <text>] [--max-length <max-length>]
Subcommands:
bert Encode text using BERT model
clip Encode text using CLIP model
xlm-roberta Encode text using XLMRoberta model
word2vec Encode word using Word2Vec model
Command line options:
--model-id <model-id> Id of the model to use
--model-file <model-file> Path to the model file (only for `Word2Vec`)
--text <text> Text to encode
--max-length <max-length> Maximum length of the input (not for `Word2Vec`)
-h, --help Show help information.
This project uses swift-format. To format the code run:
swift format . -i -r --configuration .swift-format
This project is based on and uses some of the code from: