Serving the underserved
Version | Release | Optimization | OS |
---|---|---|---|
v1.3.1 | 2.7, 3.6 | MKL MSSE4.2 MAVX2 MAVX | High Sierra |
v1.4.0rc0 | 2.7, 3.6 | XLA MKL MSSE4.2 MAVX2 MAVX | High Sierra |
v1.4.0 | 2.7, 3.6 | XLA MKL MSSE4.2 MAVX2 MAVX | High Sierra |
v1.4.1 | 2.7, 3.6 | XLA MKL MSSE4.2 MAVX2 MAVX | High Sierra |
v1.7.0rc1 | 2.7, 3.6 | XLA MKL MSSE4.2 MAVX2 MAVX | High Sierra |
The suggested version to run currently running on MKL is 1.4.1
Intel MKL-DNN includes functionality similar to Intel(R) Math Kernel Library (Intel(R) MKL) 2017, but is not API compatible. We are investigating how to unify the APIs in future Intel MKL releases.
This release contains a range of performance critical functions used in modern image recognition topologies including Cifar*, AlexNet*, VGG*, GoogleNet* and ResNet* optimized for wide range of Intel processors.
$ TF_URL='https://github.com/jjangsangy/MacOS-TensorflowBuilds/releases/download/1.4.1/tensorflow-1.4.1-cp36-cp36m-macosx_10_13_x86_64.whl'
$ pip3 installl --upgrade --force-upgrade "$TF_URL"
$ TF_URL='https://github.com/jjangsangy/MacOS-TensorflowBuilds/releases/download/1.4.1/tensorflow-1.4.1-cp27-cp27m-macosx_10_13_x86_64.whl'
$ pip2 installl --upgrade --force-upgrade "$TF_URL"
- MKL: Intel Math Kernel Library
- XLA: Accelerated Linear Algebra
- MSSE4 etc.: SIMD Vectorization Extensions
$ ./install.sh -h
DESCRIPTION:
Installer script
USAGE:
./install.sh --py ${py_version} --tf ${tf_version} --mkl ${mkl_dir}
OPTIONS:
-h| --help: Print this help message andn exit
-p| --py version: [default 3.6]
Spcify version of python
-t| --tf version: [default 1.4.0rc0]
Specify version of tensorflow
-m| --mkl path: [default /opt/intel]
Specify mkl library path
-i| --inplace [default off]
Install tensorflow inplace right after compilation