Skip to content

Commit

Permalink
[cherry-pick] Add Sparse API to_dense, to_sparse_coo and values (Padd…
Browse files Browse the repository at this point in the history
…lePaddle#41394) (PaddlePaddle#41834)

Add paddle.sparse and three Sparse API (PaddlePaddle#41276)
Add Sparse API to_dense, to_sparse_coo and values (PaddlePaddle#41394)
  • Loading branch information
zhangkaihuo authored Apr 15, 2022
1 parent 86bbb0f commit 8300e61
Show file tree
Hide file tree
Showing 17 changed files with 663 additions and 109 deletions.
45 changes: 4 additions & 41 deletions paddle/fluid/pybind/eager_method.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1271,21 +1271,6 @@ static PyObject* tensor_method_is_sparse_csr(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_to_sparse_coo(TensorObject* self, PyObject* args,
PyObject* kwargs) {
EAGER_TRY
int64_t sparse_dim = CastPyArg2AttrLong(PyTuple_GET_ITEM(args, 0), 0);
auto coo_tensor = self->tensor.to_sparse_coo(sparse_dim);
egr::EagerUtils::autograd_meta(&coo_tensor)
->SetStopGradient(
egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
egr::EagerUtils::autograd_meta(&coo_tensor)
->SetPersistable(
egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
return ToPyObject(coo_tensor);
EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_to_sparse_csr(TensorObject* self, PyObject* args,
PyObject* kwargs) {
EAGER_TRY
Expand All @@ -1300,20 +1285,6 @@ static PyObject* tensor_method_to_sparse_csr(TensorObject* self, PyObject* args,
EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor_method_to_dense(TensorObject* self, PyObject* args,
PyObject* kwargs) {
EAGER_TRY
auto dense_tensor = self->tensor.to_dense();
egr::EagerUtils::autograd_meta(&dense_tensor)
->SetStopGradient(
egr::EagerUtils::autograd_meta(&self->tensor)->StopGradient());
egr::EagerUtils::autograd_meta(&dense_tensor)
->SetPersistable(
egr::EagerUtils::autograd_meta(&(self->tensor))->Persistable());
return ToPyObject(dense_tensor);
EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* tensor__inplace_version(TensorObject* self, PyObject* args,
PyObject* kwargs) {
EAGER_TRY
Expand Down Expand Up @@ -1530,30 +1501,22 @@ PyMethodDef variable_methods[] = {
(PyCFunction)(void (*)(void))tensor__copy_gradient_from,
METH_VARARGS | METH_KEYWORDS, NULL},
/***the method of sparse tensor****/
{"non_zero_indices",
(PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
{"indices", (PyCFunction)(void (*)(void))tensor_method_get_non_zero_indices,
METH_VARARGS | METH_KEYWORDS, NULL},
{"non_zero_elements",
(PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
{"values", (PyCFunction)(void (*)(void))tensor_method_get_non_zero_elements,
METH_VARARGS | METH_KEYWORDS, NULL},
{"non_zero_crows",
(PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
{"crows", (PyCFunction)(void (*)(void))tensor_method_get_non_zero_crows,
METH_VARARGS | METH_KEYWORDS, NULL},
{"non_zero_cols",
(PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
{"cols", (PyCFunction)(void (*)(void))tensor_method_get_non_zero_cols,
METH_VARARGS | METH_KEYWORDS, NULL},
{"is_sparse", (PyCFunction)(void (*)(void))tensor_method_is_sparse,
METH_VARARGS | METH_KEYWORDS, NULL},
{"is_sparse_coo", (PyCFunction)(void (*)(void))tensor_method_is_sparse_coo,
METH_VARARGS | METH_KEYWORDS, NULL},
{"is_sparse_csr", (PyCFunction)(void (*)(void))tensor_method_is_sparse_csr,
METH_VARARGS | METH_KEYWORDS, NULL},
{"to_sparse_coo", (PyCFunction)(void (*)(void))tensor_method_to_sparse_coo,
METH_VARARGS | METH_KEYWORDS, NULL},
{"to_sparse_csr", (PyCFunction)(void (*)(void))tensor_method_to_sparse_csr,
METH_VARARGS | METH_KEYWORDS, NULL},
{"to_dense", (PyCFunction)(void (*)(void))tensor_method_to_dense,
METH_VARARGS | METH_KEYWORDS, NULL},
{"element_size", (PyCFunction)(void (*)(void))tensor_method_element_size,
METH_VARARGS | METH_KEYWORDS, NULL},
/***the method of sparse tensor****/
Expand Down
103 changes: 103 additions & 0 deletions paddle/phi/kernels/sparse/cpu/sparse_mask_kernel.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/kernels/sparse/sparse_mask_kernel.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"

#include "paddle/phi/api/ext/dispatch.h"

namespace phi {
namespace sparse {

template <typename T, typename IntT>
void SparseMaskCPUKernel(const CPUContext& dev_ctx,
const DenseTensor& x,
const SparseCooTensor& mask,
SparseCooTensor* out) {
const DDim& dims = x.dims();
PADDLE_ENFORCE_EQ(
x.dims(),
mask.dims(),
phi::errors::InvalidArgument("the input x and mask must have the shape"));
const DenseTensor& indices = mask.non_zero_indices();
const DenseTensor& values = mask.non_zero_elements();
int sparse_dim = indices.dims().size();
std::vector<int64_t> sparse_offsets(sparse_dim);
int64_t offset = 1;
for (int i = sparse_dim - 1; i >= 0; i--) {
sparse_offsets[i] = offset;
offset *= dims[i];
}

DenseTensor out_indices = phi::EmptyLike<T>(dev_ctx, indices);
DenseTensor out_values = phi::EmptyLike<T>(dev_ctx, values);

// the out_indices is same as indices of mask
phi::Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &out_indices);

const IntT* indices_ptr = indices.data<IntT>();
T* out_values_ptr = out_values.data<T>();
const T* x_ptr = x.data<T>();

const int64_t non_zero_num = mask.nnz();
auto dims_2d = flatten_to_2d(dims, sparse_dim);
const int cols = dims_2d[1];

for (int64_t i = 0; i < non_zero_num; i++) {
int64_t index = 0;
for (int j = 0; j < sparse_dim; j++) {
index += indices_ptr[j * non_zero_num + i] * sparse_offsets[j];
}
memcpy(out_values_ptr + i * cols, x_ptr + index * cols, cols * sizeof(T));
}
out->SetMember(out_indices, out_values, dims, true);
}

/**
* @brief Filter the DenseTensor x by the
* mask.non_zero_indices() and output a SparseCooTensor
* x and mask must have the same shape.
**/
template <typename T, typename Context>
void SparseMaskKernel(const Context& dev_ctx,
const DenseTensor& x,
const SparseCooTensor& mask,
SparseCooTensor* out) {
PD_DISPATCH_INTEGRAL_TYPES(
mask.non_zero_indices().dtype(), "SparseMaskCPUKernel", ([&] {
SparseMaskCPUKernel<T, data_t>(dev_ctx, x, mask, out);
}));
}

} // namespace sparse
} // namespace phi

PD_REGISTER_KERNEL(sparse_mask,
CPU,
ALL_LAYOUT,
phi::sparse::SparseMaskKernel,
float,
double,
uint8_t,
int8_t,
int16_t,
int,
int64_t) {
kernel->InputAt(1).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
30 changes: 30 additions & 0 deletions paddle/phi/kernels/sparse/cpu/sparse_utils_kernel.cc
Original file line number Diff line number Diff line change
Expand Up @@ -364,3 +364,33 @@ PD_REGISTER_KERNEL(sparse_csr_to_dense,
int16_t,
int,
int64_t) {}

PD_REGISTER_KERNEL(coo_values,
CPU,
ALL_LAYOUT,
phi::sparse::CooValuesKernel,
float,
double,
phi::dtype::float16,
uint8_t,
int8_t,
int16_t,
int,
int64_t) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
CPU,
ALL_LAYOUT,
phi::sparse::CsrValuesKernel,
float,
double,
phi::dtype::float16,
uint8_t,
int8_t,
int16_t,
int,
int64_t) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
140 changes: 140 additions & 0 deletions paddle/phi/kernels/sparse/gpu/sparse_mask_kernel.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/backends/gpu/gpu_launch_config.h"
#include "paddle/phi/core/ddim.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/copy_kernel.h"
#include "paddle/phi/kernels/empty_kernel.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/sparse/sparse_mask_kernel.h"

#include "paddle/phi/api/ext/dispatch.h"

namespace phi {
namespace sparse {

template <typename T, typename IntT>
__global__ void MaskKernel(const T* x_ptr,
const IntT* indices_ptr,
const int64_t* sparse_offsets,
const int64_t non_zero_num,
const int cols,
const int sparse_dim,
T* out_values_ptr) {
CUDA_KERNEL_LOOP_TYPE(i, non_zero_num * cols, int64_t) {
int64_t out_i = i / cols;
int64_t col_i = i - out_i * cols;
int64_t index = 0;
for (int j = 0; j < sparse_dim; j++) {
index += indices_ptr[j * non_zero_num + i] * sparse_offsets[j];
}
out_values_ptr[out_i * cols + col_i] = x_ptr[index * cols + col_i];
}
}

template <typename T, typename IntT>
void SparseMaskGPUKernel(const GPUContext& dev_ctx,
const DenseTensor& x,
const SparseCooTensor& mask,
SparseCooTensor* out) {
const DDim& dims = x.dims();
PADDLE_ENFORCE_EQ(
x.dims(),
mask.dims(),
phi::errors::InvalidArgument("the input x and mask must have the shape"));
const DenseTensor& indices = mask.non_zero_indices();
const DenseTensor& values = mask.non_zero_elements();
int sparse_dim = indices.dims().size();
DenseTensor sparse_offsets = phi::Empty(
dev_ctx,
DenseTensorMeta(DataType::INT64, {sparse_dim}, DataLayout::NCHW));
std::vector<int64_t> h_sparse_offsets(sparse_dim);
int64_t offset = 1;
for (int i = sparse_dim - 1; i >= 0; i--) {
h_sparse_offsets[i] = offset;
offset *= dims[i];
}

phi::backends::gpu::GpuMemcpyAsync(sparse_offsets.data<int64_t>(),
&h_sparse_offsets[0],
sizeof(int64_t) * sparse_dim,
#ifdef PADDLE_WITH_HIP
hipMemcpyHostToDevice,
#else
cudaMemcpyHostToDevice,
#endif
dev_ctx.stream());

DenseTensor out_indices = phi::EmptyLike<T>(dev_ctx, indices);
DenseTensor out_values = phi::EmptyLike<T>(dev_ctx, values);

phi::Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &out_indices);

const IntT* indices_ptr = indices.data<IntT>();
T* out_values_ptr = out_values.data<T>();
const T* x_ptr = x.data<T>();
const int64_t non_zero_num = mask.nnz();
auto dims_2d = flatten_to_2d(dims, sparse_dim);
const int cols = dims_2d[1];

auto config =
phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num * cols, 1);
MaskKernel<T, IntT><<<config.block_per_grid, config.thread_per_block>>>(
x_ptr,
indices_ptr,
sparse_offsets.data<int64_t>(),
non_zero_num,
cols,
sparse_dim,
out_values_ptr);

out->SetMember(out_indices, out_values, dims, true);
}

/**
* @brief Filter the DenseTensor x by the
* mask.non_zero_indices() and output a SparseCooTensor
* x and mask must have the same shape.
**/
template <typename T, typename Context>
void SparseMaskKernel(const Context& dev_ctx,
const DenseTensor& x,
const SparseCooTensor& mask,
SparseCooTensor* out) {
PD_DISPATCH_INTEGRAL_TYPES(
mask.non_zero_indices().dtype(), "SparseMaskGPUKernel", ([&] {
SparseMaskGPUKernel<T, data_t>(dev_ctx, x, mask, out);
}));
}

} // namespace sparse
} // namespace phi

PD_REGISTER_KERNEL(sparse_mask,
GPU,
ALL_LAYOUT,
phi::sparse::SparseMaskKernel,
float,
double,
phi::dtype::float16,
uint8_t,
int8_t,
int16_t,
int,
int64_t) {
kernel->InputAt(1).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
30 changes: 30 additions & 0 deletions paddle/phi/kernels/sparse/gpu/sparse_utils_kernel.cu
Original file line number Diff line number Diff line change
Expand Up @@ -635,3 +635,33 @@ PD_REGISTER_KERNEL(sparse_csr_to_dense,
int16_t,
int,
int64_t) {}

PD_REGISTER_KERNEL(coo_values,
GPU,
ALL_LAYOUT,
phi::sparse::CooValuesKernel,
float,
double,
phi::dtype::float16,
uint8_t,
int8_t,
int16_t,
int,
int64_t) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}

PD_REGISTER_KERNEL(csr_values,
GPU,
ALL_LAYOUT,
phi::sparse::CsrValuesKernel,
float,
double,
phi::dtype::float16,
uint8_t,
int8_t,
int16_t,
int,
int64_t) {
kernel->InputAt(0).SetDataLayout(phi::DataLayout::SPARSE_COO);
}
Loading

0 comments on commit 8300e61

Please sign in to comment.