Skip to content

[NAACL 2022] Collective Relevance Labeling for Passage Retrieval

Notifications You must be signed in to change notification settings

jihyukkim-nlp/CollectiveKD

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

32 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

CollectiveKD

This PyTorch code was used in the experiments of the research paper

Jihyuk Kim, Minsoo Kim, and Seung-won Hwang. Collective Relevance Labeling for Passage Retrieval. NAACL'22.

Our implementation is adapted from ColBERT and ColBERT-PRF. Thanks to the contributors for the awesome codes! :)

Data format

You need the following data.

For training,

  • passage collection: collection.tsv
  • query collection for training dataset: queries.train.tsv
  • training triples (query, positive passage, negative passage): triples.train.small.ids.jsonl

For validation/evaluation,

  • validation triples (query, positive passage, negative passage): top1000.dev
  • query collection for validation dataset: queries.dev.small.tsv
  • relevance annotation for validation dataset: qrels.dev.small.tsv

You can download data here.

[1] collection.tsv

Example)

0       The presence of communication amid scientific minds was equally important to the success of the Manhattan Project as scientific intellect was. The only cloud hanging over the impressive achievement of the atomic researchers and engineers is what their success truly meant; hundreds of thousands of innocent lives obliterated.
1       The Manhattan Project and its atomic bomb helped bring an end to World War II. Its legacy of peaceful uses of atomic energy continues to have an impact on history and science.
2       Essay on The Manhattan Project - The Manhattan Project The Manhattan Project was to see if making an atomic bomb possible. The success of this project would forever change the world forever making it known that something this powerful can be manmade.
3       The Manhattan Project was the name for a project conducted during World War II, to develop the first atomic bomb. It refers specifically to the period of the project from 194 Γ’Β¦ 2-1946 under the control of the U.S. Army Corps of Engineers, under the administration of General Leslie R. Groves.
4       versions of each volume as well as complementary websites. The first websiteΓ’The Manhattan Project: An Interactive HistoryΓ’is available on the Office of History and Heritage Resources website, http://www.cfo. doe.gov/me70/history. The Office of History and Heritage Resources and the National Nuclear Security
column data type description
1 int passage id (pid)
2 str passage

[2] queries.train.tsv or queries.dev.small.tsv

Examples from queries.train.tsv)

121352  define extreme
634306  what does chattel mean on credit history
920825  what was the great leap forward brainly
510633  tattoo fixers how much does it cost
737889  what is decentralization process.
column data type description
1 int query id (qid)
2 str query

[3] triples.train.small.ids.jsonl

Example)

[400296, 1540783, 3518497]
[662731, 193249, 2975302]
[238256, 4435042, 100008]
[527862, 1505983, 2975302]
[275813, 5736515, 1238670]
[984152, 2304924, 3372067]
[294432, 2592502, 2592504]
[444656, 2932850, 2975302]
[81644, 1097740, 2747766]
[189845, 1051356, 4238671]
column data type description
1 int qid (ID in queries.train.tsv)
2 int pid of positve passage (ID in collection.tsv)
3 int pid of negative passage (ID in collection.tsv)

How positive/negative passages were obtained.

  • The positive passages are labeled by human annotators.
  • The negative passages are sampled from unlabeled passages.

[4] top1000.dev

Example)

188714  1000052 foods and supplements to lower blood sugar      Watch portion sizes: _ Even healthy foods will cause high blood sugar if you eat too much. _ Make sure each of your meals has the same amount of CHOs. Avoid foods high in sugar: _ Some foods to avoid: sugar, honey, candies, syrup, cakes, cookies, regular soda and.
1082792 1000084 what does the golgi apparatus do to the proteins and lipids once they arrive ?  Start studying Bonding, Carbs, Proteins, Lipids. Learn vocabulary, terms, and more with flashcards, games, and other study tools.
995526  1000094 where is the federal penitentiary in ind        It takes THOUSANDS of Macy's associates to bring the MAGIC of MACY'S to LIFE! Our associate team is an invaluable part of who we are and what we do. F ind the seasonal job that's right for you at holiday.macysJOBS.com!
199776  1000115 health benefits of eating vegetarian    The good news is that you will discover what goes into action spurs narrowing of these foods not only a theoretical supposition there are diagnosed with great remedy is said that most people and more can be done. Duncan was a wonderful can eating chicken cause gout benefits of natural. options with your health.
660957  1000115 what foods are good if you have gout?   The good news is that you will discover what goes into action spurs narrowing of these foods not only a theoretical supposition there are diagnosed with great remedy is said that most people and more can be done. Duncan was a wonderful can eating chicken cause gout benefits of natural. options with your health.
column data type description
1 int qid (ID in queries.train.tsv)
2 int pid of positve passage (ID in collection.tsv)
3 str positive passage
4 str negative passage

[5] qrels.dev.small.tsv

Example)

300674  0       7067032 1
125705  0       7067056 1
94798   0       7067181 1
9083    0       7067274 1
174249  0       7067348 1
column data type description
1 int qid
2 int 0 (dummy; ignore this)
3 int pid of relevant passage (ID in collection.tsv)
4 int 1 (dummy; ignore this)

Step 1. Preliminary: Training ColBERT Teacher

  • πŸ”„ Reproduce The checkpoint used in our experiments can be downloaded here (colbert.dnn)

An example bash command for training:

CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 --master_addr 127.0.0.1 --master_port 29500 \
-m colbert.train --maxsteps 400000 --amp --bsize 36 --lr 3e-06 --accum 1 \
--triples /path/to/triples.jsonl \
--queries /path/to/queries.train.tsv \
--collection /path/to/collection.tsv \
--doc_maxlen 180 --mask-punctuation --similarity l2 \
--root experiments/colbert-b36-lr3e6 --experiment MSMARCO-psg --run msmarco.psg.l2

An example bash command for validation (on re-ranking task):

checkpoint_to_be_validated=experiments/colbert-b36-lr3e6/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-100000.dnn
checkpoint_to_be_validated=experiments/colbert-b36-lr3e6/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-200000.dnn
checkpoint_to_be_validated=experiments/colbert-b36-lr3e6/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-300000.dnn
checkpoint_to_be_validated=experiments/colbert-b36-lr3e6/MSMARCO-psg/train.py/msmarco.psg.l2/checkpoints/colbert-400000.dnn
CUDA_VISIBLE_DEVICES=0 \
python -m colbert.test --checkpoint ${checkpoint_to_be_validated} \
--amp --doc_maxlen 180 --mask-punctuation \
--collection /path/to/collection.tsv \
--queries /path/to/queries.dev.small.tsv \
--qrels /path/to/qrels.dev.small.tsv \
--topk /path/to/top1000.dev \
--root experiments/colbert-b36-lr3e6 --experiment MSMARCO-psg

Step 2. Obtain Collective Knowledge from PRF

The overall process is as follows:

  1. encoding and indexing passages in the collection.
  2. retrieval, to obtain pseudo-relevance feedback (PRF).
  3. obtaining collective knowledge from PRF.

Step 2-1: Encoding and Indexing

An example bash command for encoding and indexing:

# encoding passages
CUDA_VISIBLE_DEVICES=0,1 OMP_NUM_THREADS=2 \
python -m torch.distributed.launch --nproc_per_node=2 --master_addr 127.0.0.1 --master_port 30000 \
-m colbert.index --amp --doc_maxlen 180 --mask-punctuation --bsize 1024 \
--checkpoint /path/to/colbert.dnn --collection /path/to/collection.tsv \
--index_root experiments/colbert-b36-lr3e6/MSMARCO-psg/index.py --index_name MSMARCO.L2.32x200k \
--root experiments/colbert-b36-lr3e6 --experiment MSMARCO-psg

# faiss indexing for approximate nearest neighbor search
CUDA_VISIBLE_DEVICES=0,1 python -m colbert.index_faiss \
--index_root experiments/colbert-b36-lr3e6/MSMARCO-psg/index.py --index_name MSMARCO.L2.32x200k \
--partitions 32768 --sample 0.3 --slices 1 \
--root experiments/colbert-b36-lr3e6 --experiment MSMARCO-psg

Step 2-2: Retrieval

An example bash command for retrieval, to obtain pseudo-relevance feedback (PRF):

echo;echo;echo
# 1. ANN search (FAISS)
topk_dir=experiments/colbert-b36-lr3e6/MSMARCO-psg-PRF/retrieve.py/pseudo_relevance_feedback
topk=${topk_dir}/unordered.tsv
if [ ! -f ${topk} ];then
    CUDA_VISIBLE_DEVICES=0 python -m colbert.retrieve --batch --retrieve_only --amp --doc_maxlen 180 --mask-punctuation --bsize 512 \
    --queries /path/to/queries \
    --nprobe 32 --partitions 32768 --faiss_depth 1024 --index_root experiments/colbert-b36-lr3e6/MSMARCO-psg/index.py --index_name MSMARCO.L2.32x200k \
    --checkpoint /path/to/colbert.dnn --root experiments/colbert-b36-lr3e6 --experiment MSMARCO-psg-PRF --run pseudo_relevance_feedback
else
    echo "We have ANN search result at: \"${topk}\""
fi

echo;echo;echo
# 2. Split the large query file into small files, to prevent out-of-memory
[ ! -f "${queries}" ] && echo "${queries} does not exist." && return
queries_split=/path/to/queries.train.splits
echo "1. Split the large query file into small files, to prevent out-of-memory"
echo "mkdir ${queries_split}"
mkdir -p ${queries_split}
echo "split \"${queries}\" into multiple queries with 100000 lines each"
split -d -l 50000 ${queries} ${queries_split}/queries.tsv.
echo "Splitted query files"
wc -l ${queries_split}/*
n_splits=$(ls ${queries_split} | wc -l)
echo


echo;echo;echo
# 3. Filter ANN search result (top-K pids in ``unordered.tsv``), using each split queries
[ ! -f "${topk}" ] && echo "${topk} does not exist." && return
topk_split=${topk_dir}/queries.train.splits #TODO: custom path
echo "3. Split the large unordered.tsv file into small files, to prevent out-of-memory"
echo "mkdir ${topk_split}"
mkdir -p ${topk_split}
small_queries=""
filtered_topk=""
for i in $(seq -f "%02g" 0 $(expr ${n_splits} - 1));do
    small_queries="${small_queries} ${queries_split}/queries.tsv.${i}"
    filtered_topk="${filtered_topk} ${topk_split}/unordered.${i}.tsv"
done
python -m preprocessing.utils.filter_topK_pids --topk ${topk} \
--queries ${small_queries} \
--filtered_topk ${filtered_topk}


echo;echo;echo
# 4. Exact-NN search
echo "4. Exact-NN search"
# 
for i in $(seq -f "%02g" 0 $(expr ${n_splits} - 1));do
    small_queries=${queries_split}/queries.tsv.${i}
    small_topk=${topk_split}/unordered.${i}.tsv
    [ ! -f "${small_queries}" ] && echo "${small_queries} does not exist." && return
    [ ! -f "${small_topk}" ] && echo "${small_topk} does not exist." && return
    [ ! -d "${index_root}" ] && echo "${index_root} does not exist." && return
    [ ! -f "${checkpoint}" ] && echo "${checkpoint} does not exist." && return
    [ ! -d "${exp_root}" ] && echo "${exp_root} does not exist." && return

    CUDA_VISIBLE_DEVICES=0 python \
    -m colbert.label --amp --doc_maxlen 180 --mask-punctuation --bsize 512 \
    --batch --log-scores \
    --topk ${small_topk} --queries ${small_queries} \
    --index_root experiments/colbert-b36-lr3e6/MSMARCO-psg/index.py --index_name MSMARCO.L2.32x200k \
    --checkpoint /path/to/colbert.dnn \
    --qrels /path/to/qrels.train.tsv \
    --collection /path/to/collection.tsv \
    --root experiments/colbert-b36-lr3e6 --experiment MSMARCO-psg-PRF  --run pseudo_relevance_feedback.${i} \
    --fb_k 0 --beta 0.0 --depth 1000 --score_by_range
done


echo;echo;echo
# 5. Merge results
ranking=experiments/colbert-b36-lr3e6/MSMARCO-psg-PRF/label.py/ranking.tsv
ranking_jsonl=experiments/colbert-b36-lr3e6/MSMARCO-psg-PRF/label.py/ranking.jsonl
echo "5. Merge results"
echo -n "" > ${ranking}
echo -n "" > ${ranking_jsonl}
for i in $(seq -f "%02g" 0 $(expr ${n_splits} - 1));do
    small_ranking=experiments/colbert-b36-lr3e6/MSMARCO-psg-PRF/label.py/pseudo_relevance_feedback.${i}/ranking.tsv
    cat ${small_ranking} >> ${ranking}
    small_ranking_jsonl=experiments/colbert-b36-lr3e6/MSMARCO-psg-PRF/label.py/pseudo_relevance_feedback.${i}/ranking.jsonl
    cat ${small_ranking_jsonl} >> ${ranking_jsonl}
    # delete splited file results
    rm -v experiments/colbert-b36-lr3e6/MSMARCO-psg-PRF/label.py/pseudo_relevance_feedback.${i}/ranking.*
done

Step 2-3: Obtaining Collective Knowledge

An example bash command for obtaining collective knowledge:

CUDA_VISIBLE_DEVICES=0 python \
-m colbert.label --amp --doc_maxlen 180 --mask-punctuation --bsize 512 \
--root experiments/colbert-b36-lr3e6 --experiment MSMARCO-psg-CollectiveKnowledge \
--expansion_only --prf --fb_docs 3 --fb_k 10 --beta 1.0 --fb_clusters 24 \
--index_root experiments/colbert-b36-lr3e6/MSMARCO-psg/index.py --index_name MSMARCO.L2.32x200k \
--nprobe 32 --partitions 32768 --faiss_depth 1024 \
--batch --log-scores \
--fb_ranking /path/to/colbert.msmarco_pass.train.ranking.jsonl \
--checkpoint /path/to/colbert.dnn \
--queries /path/to/queries.train.tsv \
--qrels /path/to/qrels.train.tsv \
--collection /path/to/collection.tsv \

Step 3. Knowledge Distill using Collective Knowledge

Step 3-1: Constructing new train triples

We leverage PRF as hard negatives, to obtain better negative training samples.

An example bash command for constructing new train triples:

python -m preprocessing.hard_negatives.construct_new_train_triples \
--hn_topk 100 --n_triples 40000000 --n_negatives 1 \
--qrels /path/to/qrels.train.tsv \
--hn /path/to/colbert.msmarco_pass.train.ranking.jsonl \
--output /path/to/triples.train.small.ids.hn.jsonl

Step 3-2: Training using Knowledge Distillation

An example bash command for KD training:

CUDA_VISIBLE_DEVICES=0,1 python \
-m torch.distributed.launch --nproc_per_node=2 --master_addr 127.0.0.1 --master_port 29500 \
-m colbert.train --maxsteps 600000 --amp --bsize 36 --lr 3e-06 --accum 1 \
--doc_maxlen 180 --mask-punctuation --similarity l2 \
--root experiments/ck_distill-colbert-b36-lr3e6 --experiment MSMARCO-psg --run msmarco.psg.l2 \
--knowledge_distillation --kd_temperature 0.25 --kd_query_expansion \
--triples /path/to/triples.train.small.ids.hn.jsonl \
--checkpoint /path/to/colbert.dnn \
--queries /path/to/queries.train.tsv \
--collection /path/to/collection.tsv \
--teacher_checkpoint /path/to/colbert.dnn \
--kd_expansion_pt /path/to/colbert.msmarco_pass.train.collective_knowledge.pt

Evaluation

  • πŸ”„ Reproduce The ranking files, for colbert (baseline) and ck_distill-colbert (ours), used in our experiments, can be downloaded here.

An example bash command for end-to-end ranking:

# Approximate NN Search, using Faiss index
CUDA_VISIBLE_DEVICES=0 python -m colbert.retrieve \
--batch --retrieve_only --amp --doc_maxlen 180 --mask-punctuation --bsize 512 \
--queries /path/to/queries.dev.small.tsv \
--nprobe 32 --partitions 32768 --faiss_depth 1024 --index_root /path/to/index.py --index_name MSMARCO.L2.32x200k \
--checkpoint /path/to/checkpoint --root /path/to/root --experiment MSMARCO-psg --run msmarco_dev
# Exact-NN Search
CUDA_VISIBLE_DEVICES=0 python -m colbert.rerank \
--topk /path/to/root/MSMARCO-psg/retrieve.py/msmarco_dev/unordered.tsv \
--batch --log-scores --amp --doc_maxlen 180 --mask-punctuation --bsize 512 \
--queries /path/to/queries.dev.small.tsv \
--index_root /path/to/index.py --index_name MSMARCO.L2.32x200k \
--checkpoint /path/to/checkpoint --root /path/to/root --experiment MSMARCO-psg --run msmarco_dev

An example bash command for evaluation:

# For MSMARCO Dev
python -m utility.evaluate.trec_format_evaluation \
--binarization_point 1 --per_query_annotate \
--queries /path/to/queries.dev.small.tsv \
--qrels /path/to/qrels.dev.small.tsv \
--ranking /path/to/MSMARCO-psg/rerank.py/msmarco_dev/ranking.tsv

# For TREC-DL 2019/2020
# Note that, for TREC queries, we use ``--binarization_point 2``.
python -m utility.evaluate.trec_format_evaluation \
--binarization_point 2 --per_query_annotate \
--queries /path/to/queries.trec[2019/2020].tsv \
--qrels /path/to/[2019/2020]qrels-pass.txt \
--ranking /path/to/MSMARCO-psg/rerank.py/trec[2019/2020]/ranking.tsv

Citation

To cite the paper/code, please use this BibTex:

@inproceedings{kim-etal-2022-collective,
    title = "Collective Relevance Labeling for Passage Retrieval",
    author = "Kim, Jihyuk  and
      Kim, Minsoo  and
      Hwang, Seung-won",
    booktitle = "Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies",
    month = jul,
    year = "2022",
    address = "Seattle, United States",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.naacl-main.305",
    doi = "10.18653/v1/2022.naacl-main.305",
    pages = "4141--4147",
}

About

[NAACL 2022] Collective Relevance Labeling for Passage Retrieval

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages