目前集成了中文的CTC\Transducer\LAS 三种结构
当前还在开发阶段
欢迎使用并反馈bug
English|中文版
TTS:https://github.com/Z-yq/TensorflowTTS
NLU: -
BOT: -
参照librosa库,用TF2实现了语音频谱特征提取的层,这样在跨平台部署时会更加容易。
使用:
- am_data.yml
use_mel_layer: True mel_layer_type: Melspectrogram #Spectrogram trainable_kernel: True #support train model,not recommend
C++的demo已经提供。
测试于TensorflowC 2.3.0版本
详细见目录 cppinference
所有结果测试于 AISHELL TEST
数据集.
RTF(实时率) 测试于CPU单核解码任务。
AM:
Model Name | Mel layer(USE/TRAIN) | link | code | train data | phoneme CER(%) | Params Size | RTF |
---|---|---|---|---|---|---|---|
ConformerCTC(M) | True/False | pan.baidu.com/s/1NPk17DUr0-lBgwCkC5dFuQ | 7qmd | aishell-1(20 epochs) | 6.2/5.1 | 32M | 0.114 |
ConformerCTS(S) | True/False | pan.baidu.com/s/1mHR2RryT7Rw0D4I9caY0QQ | 7g3n | aishell-1(20 epochs) | 9.1/8.7 | 10M | 0.056 |
LM:
Model Name | O2O(Decoder) | link | code | train data | txt cer | model size | params size | RTF |
---|---|---|---|---|---|---|---|---|
TransformerO2OE | True(False) | pan.baidu.com/s/1X11OE_sk7yNTjtDpU7sfvA | sxrw | aishell-1 text(30 epochs) | 4.4 | 43M | 10M | 0.06 |
TransformerO2OED | True(True) | pan.baidu.com/s/1acvCRpS2j16dxLoCyToB6A | jrfi | aishell2 text(10k steps) | 6.2 | 217M | 61M | 0.13 |
Transformer | True(True) | - | - | aishell2 text(10k steps) | 8.6 | 233M | 61M | 0.31 |
快速使用:
下载预训练模型,修改 am_data.yml/lm_data.yml 里的目录参数(running_config下的outdir参数),并在修改后的目录中添加 checkpoints 目录,
将model_xx.h5(xx为数字)文件放入对应的checkpoints目录中,
修改run-test.py中的读取的config文件(am_data.yml,model.yml)路径,运行run-test.py即可。
欢迎加入,讨论和分享问题。
最新更新
- 优化了一些逻辑
- Change RNNT predict to support C++
- Add C++ Inference Demo,detail in cppinference
- CTC
- Transducer
- LAS
- MultiTaskCTC
- Conformer
- ESPNet:
Efficient Spatial Pyramid of Dilated Convolutions
- DeepSpeech2
- Transformer
拼音->汉字
- O2O-Encoder-Decoder
完整的transformer结构,拼音与汉字一一对应的形式 ,e.g.: pin4 yin4-> 拼音
- O2O-Encoder
不含decoder部分的结构
- Encoder-Decoder
经典的transformer结构
- O2O-Encoder-Decoder
- Python 3.6+
- Tensorflow 2.2+:
pip install tensorflow
- librosa
- pypinyin
if you need use the default phoneme
- keras-bert
- addons
For LAS structure,pip install tensorflow-addons
- tqdm
- jieba
- wrap_rnnt_loss
not essential,provide in ./externals
- wrap_ctc_decoders
not essential,provide in ./externals
-
准备train_list.
am_train_list 格式,其中'\t'为tap:
file_path1 \t text1 file_path2 \t text2 ……
lm_train_list 格式:
text1 text2 ……
-
下载bert的预训练模型,用于LM的辅助训练,如果你不需要LM可以跳过:
https://pan.baidu.com/s/1_HDAhfGZfNhXS-cYoLQucA extraction code: 4hsa
-
修改配置文件
am_data.yml
(in ./configs)来设置一些训练的选项,以及修改model yaml(如:./configs/conformer.yml) 里的name
参数来选择模型结构。 -
然后执行命令:
python train_am.py --data_config ./configs/am_data.yml --model_config ./configs/conformer.yml
-
想要测试时,可以参考
run-test.py
里写的demo,当然你可以修改predict
方法来适应你的需求:from utils.user_config import UserConfig from AMmodel.model import AM from LMmodel.trm_lm import LM am_config=UserConfig(r'./configs/am_data.yml',r'./configs/conformer.yml') lm_config = UserConfig(r'./configs/lm_data.yml', r'./configs/transformer.yml') am=AM(am_config) am.load_model(training=False) lm=LM(lm_config) lm.load_model(training=False) am_result=am.predict(wav_path) if am.model_type=='Transducer': am_result =am.decode(am_result[1:-1]) lm_result = lm.predict(am_result) lm_result = lm.decode(lm_result[0].numpy(), self.lm.word_featurizer) else: am_result=am.decode(am_result[0]) lm_result=lm.predict(am_result) lm_result = lm.decode(lm_result[0].numpy(), self.lm.word_featurizer)
也可以使用Tester 来大批量测试数据验证你的模型性能:
第一步需要修改 am_data.yml/lm_data.yml
里的 eval_list
,格式与 train_list
相同
然后执行:
python eval_am.py --data_config ./configs/am_data.yml --model_config ./configs/conformer.yml
该脚本将展示 SER/CER/DEL/INS/SUB 几项指标
如果你想加入你自己的模型,你可以将模型加入 ./AMmodel
目录里 ,声学、语言模型操作都一样,语言模型就放在 ./LMmodel
里
from AMmodel.transducer_wrap import Transducer
from AMmodel.ctc_wrap import CtcModel
from AMmodel.las_wrap import LAS,LASConfig
class YourModel(tf.keras.Model):
def __init__(self,……):
super(YourModel, self).__init__(……)
……
def call(self, inputs, training=False, **kwargs):
……
return decoded_feature
#To CTC
class YourModelCTC(CtcModel):
def __init__(self,
……
**kwargs):
super(YourModelCTC, self).__init__(
encoder=YourModel(……),num_classes=vocabulary_size,name=name,
)
self.time_reduction_factor = reduction_factor #if you never use the downsample layer,set 1
#To Transducer
class YourModelTransducer(Transducer):
def __init__(self,
……
**kwargs):
super(YourModelTransducer, self).__init__(
encoder=YourModel(……),
vocabulary_size=vocabulary_size,
embed_dim=embed_dim,
embed_dropout=embed_dropout,
num_lstms=num_lstms,
lstm_units=lstm_units,
joint_dim=joint_dim,
name=name, **kwargs
)
self.time_reduction_factor = reduction_factor #if you never use the downsample layer,set 1
#To LAS
class YourModelLAS(LAS):
def __init__(self,
……,
config,# the config dict in model yml
training,
**kwargs):
config['LAS_decoder'].update({'encoder_dim':encoder_dim})# encoder_dim is your encoder's last dimension
decoder_config=LASConfig(**config['LAS_decoder'])
super(YourModelLAS, self).__init__(
encoder=YourModel(……),
config=decoder_config,
training=training,
)
self.time_reduction_factor = reduction_factor #if you never use the downsample layer,set 1
然后,将你的模型添加到./AMmodel/model.py
,修改方法 load_model
来导入你的模型。
AM/LM 的操作都相同:
from AMmodel.model import AM
am_config = UserConfig('...','...')
am=AM(am_config)
am.load_model(False)
am.convert_to_pb(export_path)
如果你想用你自己的音素,需要对应 am_dataloader.py/lm_dataloader.py
里的转换方法。
def init_text_to_vocab(self):#keep the name
def text_to_vocab_func(txt):
return your_convert_function
self.text_to_vocab = text_to_vocab_func #here self.text_to_vocab is a function,not a call
不要忘记你的音素列表用 S
和 /S
打头,e.g:
S
/S
de
shì
……
感谢关注:
https://github.com/usimarit/TiramisuASR modify from it
https://github.com/noahchalifour/warp-transducer
https://github.com/PaddlePaddle/DeepSpeech
https://github.com/baidu-research/warp-ctc
允许并感谢您使用本项目进行学术研究、商业产品生产等,但禁止将本项目作为商品进行交易。
Overall, Almost models here are licensed under the Apache 2.0 for all countries in the world.
Allow and thank you for using this project for academic research, commercial product production, allowing unrestricted commercial and non-commercial use alike.
However, it is prohibited to trade this project as a commodity.