Skip to content

Commit

Permalink
Add TensorRT nms plugin for end2end ppyoloe detection (PaddlePaddle#6348
Browse files Browse the repository at this point in the history
)

* Add end2end deploy

* Add ppyoloe_crn_s_400e model deploy
  • Loading branch information
triple-Mu authored Jul 26, 2022
1 parent ac28261 commit ab791b1
Show file tree
Hide file tree
Showing 4 changed files with 488 additions and 0 deletions.
99 changes: 99 additions & 0 deletions deploy/end2end_ppyoloe/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
# Export ONNX Model
## Download pretrain paddle models

* [ppyoloe-s](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams)
* [ppyoloe-m](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams)
* [ppyoloe-l](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams)
* [ppyoloe-x](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams)
* [ppyoloe-s-400e](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_400e_coco.pdparams)


## Export paddle model for deploying

```shell
python ./tools/export_model.py \
-c configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml \
-o weights=ppyoloe_crn_s_300e_coco.pdparams \
trt=True \
exclude_nms=True \
TestReader.inputs_def.image_shape=[3,640,640] \
--output_dir ./

# if you want to try ppyoloe-s-400e model
python ./tools/export_model.py \
-c configs/ppyoloe/ppyoloe_crn_s_400e_coco.yml \
-o weights=ppyoloe_crn_s_400e_coco.pdparams \
trt=True \
exclude_nms=True \
TestReader.inputs_def.image_shape=[3,640,640] \
--output_dir ./
```

## Check requirements
```shell
pip install onnx>=1.10.0
pip install paddle2onnx
pip install onnx-simplifier
pip install onnx-graphsurgeon --index-url https://pypi.ngc.nvidia.com
# if use cuda-python infer, please install it
pip install cuda-python
# if use cupy infer, please install it
pip install cupy-cuda117 # cuda110-cuda117 are all available
```

## Export script
```shell
python ./deploy/end2end_ppyoloe/end2end.py \
--model-dir ppyoloe_crn_s_300e_coco \
--save-file ppyoloe_crn_s_300e_coco.onnx \
--opset 11 \
--batch-size 1 \
--topk-all 100 \
--iou-thres 0.6 \
--conf-thres 0.4
# if you want to try ppyoloe-s-400e model
python ./deploy/end2end_ppyoloe/end2end.py \
--model-dir ppyoloe_crn_s_400e_coco \
--save-file ppyoloe_crn_s_400e_coco.onnx \
--opset 11 \
--batch-size 1 \
--topk-all 100 \
--iou-thres 0.6 \
--conf-thres 0.4
```
#### Description of all arguments

- `--model-dir` : the path of ppyoloe export dir.
- `--save-file` : the path of export onnx.
- `--opset` : onnx opset version.
- `--img-size` : image size for exporting ppyoloe.
- `--batch-size` : batch size for exporting ppyoloe.
- `--topk-all` : topk objects for every image.
- `--iou-thres` : iou threshold for NMS algorithm.
- `--conf-thres` : confidence threshold for NMS algorithm.

### TensorRT backend (TensorRT version>= 8.0.0)
#### TensorRT engine export
``` shell
/path/to/trtexec \
--onnx=ppyoloe_crn_s_300e_coco.onnx \
--saveEngine=ppyoloe_crn_s_300e_coco.engine \
--fp16 # if export TensorRT fp16 model
# if you want to try ppyoloe-s-400e model
/path/to/trtexec \
--onnx=ppyoloe_crn_s_400e_coco.onnx \
--saveEngine=ppyoloe_crn_s_400e_coco.engine \
--fp16 # if export TensorRT fp16 model
```
#### TensorRT image infer

``` shell
# cuda-python infer script
python ./deploy/end2end_ppyoloe/cuda-python.py ppyoloe_crn_s_300e_coco.engine
# cupy infer script
python ./deploy/end2end_ppyoloe/cupy-python.py ppyoloe_crn_s_300e_coco.engine
# if you want to try ppyoloe-s-400e model
python ./deploy/end2end_ppyoloe/cuda-python.py ppyoloe_crn_s_400e_coco.engine
# or
python ./deploy/end2end_ppyoloe/cuda-python.py ppyoloe_crn_s_400e_coco.engine
```
161 changes: 161 additions & 0 deletions deploy/end2end_ppyoloe/cuda-python.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,161 @@
import sys
import requests
import cv2
import random
import time
import numpy as np
import tensorrt as trt
from cuda import cudart
from pathlib import Path
from collections import OrderedDict, namedtuple


def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)

# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)

# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding

if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding

dw /= 2 # divide padding into 2 sides
dh /= 2

if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, r, (dw, dh)


w = Path(sys.argv[1])

assert w.exists() and w.suffix in ('.engine', '.plan'), 'Wrong engine path'

names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
colors = {name: [random.randint(0, 255) for _ in range(3)] for i, name in enumerate(names)}

url = 'https://oneflow-static.oss-cn-beijing.aliyuncs.com/tripleMu/image1.jpg'
file = requests.get(url)
img = cv2.imdecode(np.frombuffer(file.content, np.uint8), 1)

_, stream = cudart.cudaStreamCreate()

mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 3, 1, 1)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 3, 1, 1)

# Infer TensorRT Engine
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
logger = trt.Logger(trt.Logger.ERROR)
trt.init_libnvinfer_plugins(logger, namespace="")
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
model = runtime.deserialize_cuda_engine(f.read())
bindings = OrderedDict()
fp16 = False # default updated below
for index in range(model.num_bindings):
name = model.get_binding_name(index)
dtype = trt.nptype(model.get_binding_dtype(index))
shape = tuple(model.get_binding_shape(index))
data = np.empty(shape, dtype=np.dtype(dtype))
_, data_ptr = cudart.cudaMallocAsync(data.nbytes, stream)
bindings[name] = Binding(name, dtype, shape, data, data_ptr)
if model.binding_is_input(index) and dtype == np.float16:
fp16 = True
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
context = model.create_execution_context()

image = img.copy()
image, ratio, dwdh = letterbox(image, auto=False)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

image_copy = image.copy()

image = image.transpose((2, 0, 1))
image = np.expand_dims(image, 0)
image = np.ascontiguousarray(image)

im = image.astype(np.float32)
im /= 255
im -= mean
im /= std

_, image_ptr = cudart.cudaMallocAsync(im.nbytes, stream)
cudart.cudaMemcpyAsync(image_ptr, im.ctypes.data, im.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyHostToDevice, stream)

# warmup for 10 times
for _ in range(10):
tmp = np.random.randn(1, 3, 640, 640).astype(np.float32)
_, tmp_ptr = cudart.cudaMallocAsync(tmp.nbytes, stream)
binding_addrs['image'] = tmp_ptr
context.execute_v2(list(binding_addrs.values()))

start = time.perf_counter()
binding_addrs['image'] = image_ptr
context.execute_v2(list(binding_addrs.values()))
print(f'Cost {(time.perf_counter() - start) * 1000}ms')

nums = bindings['num_dets'].data
boxes = bindings['det_boxes'].data
scores = bindings['det_scores'].data
classes = bindings['det_classes'].data

cudart.cudaMemcpyAsync(nums.ctypes.data,
bindings['num_dets'].ptr,
nums.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaMemcpyAsync(boxes.ctypes.data,
bindings['det_boxes'].ptr,
boxes.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaMemcpyAsync(scores.ctypes.data,
bindings['det_scores'].ptr,
scores.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)
cudart.cudaMemcpyAsync(classes.ctypes.data,
bindings['det_classes'].ptr,
classes.data.nbytes,
cudart.cudaMemcpyKind.cudaMemcpyDeviceToHost,
stream)

cudart.cudaStreamSynchronize(stream)
cudart.cudaStreamDestroy(stream)

for i in binding_addrs.values():
cudart.cudaFree(i)

num = int(nums[0][0])
box_img = boxes[0, :num].round().astype(np.int32)
score_img = scores[0, :num]
clss_img = classes[0, :num]
for i, (box, score, clss) in enumerate(zip(box_img, score_img, clss_img)):
name = names[int(clss)]
color = colors[name]
cv2.rectangle(image_copy, box[:2].tolist(), box[2:].tolist(), color, 2)
cv2.putText(image_copy, name, (int(box[0]), int(box[1]) - 2), cv2.FONT_HERSHEY_SIMPLEX,
0.75, [225, 255, 255], thickness=2)

cv2.imshow('Result', cv2.cvtColor(image_copy, cv2.COLOR_RGB2BGR))
cv2.waitKey(0)
131 changes: 131 additions & 0 deletions deploy/end2end_ppyoloe/cupy-python.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,131 @@
import sys
import requests
import cv2
import random
import time
import numpy as np
import cupy as cp
import tensorrt as trt
from PIL import Image
from collections import OrderedDict, namedtuple
from pathlib import Path


def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=True, stride=32):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)

# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)

# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding

if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding

dw /= 2 # divide padding into 2 sides
dh /= 2

if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im, r, (dw, dh)


names = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light',
'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow',
'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee',
'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard',
'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple',
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch',
'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone',
'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear',
'hair drier', 'toothbrush']
colors = {name: [random.randint(0, 255) for _ in range(3)] for i, name in enumerate(names)}

url = 'https://oneflow-static.oss-cn-beijing.aliyuncs.com/tripleMu/image1.jpg'
file = requests.get(url)
img = cv2.imdecode(np.frombuffer(file.content, np.uint8), 1)

w = Path(sys.argv[1])

assert w.exists() and w.suffix in ('.engine', '.plan'), 'Wrong engine path'

mean = np.array([0.485, 0.456, 0.406], dtype=np.float32).reshape(1, 3, 1, 1)
std = np.array([0.229, 0.224, 0.225], dtype=np.float32).reshape(1, 3, 1, 1)

mean = cp.asarray(mean)
std = cp.asarray(std)

# Infer TensorRT Engine
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
logger = trt.Logger(trt.Logger.INFO)
trt.init_libnvinfer_plugins(logger, namespace="")
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
model = runtime.deserialize_cuda_engine(f.read())
bindings = OrderedDict()
fp16 = False # default updated below
for index in range(model.num_bindings):
name = model.get_binding_name(index)
dtype = trt.nptype(model.get_binding_dtype(index))
shape = tuple(model.get_binding_shape(index))
data = cp.empty(shape, dtype=cp.dtype(dtype))
bindings[name] = Binding(name, dtype, shape, data, int(data.data.ptr))
if model.binding_is_input(index) and dtype == np.float16:
fp16 = True
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
context = model.create_execution_context()

image = img.copy()
image, ratio, dwdh = letterbox(image, auto=False)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

image_copy = image.copy()

image = image.transpose((2, 0, 1))
image = np.expand_dims(image, 0)
image = np.ascontiguousarray(image)

im = cp.asarray(image)
im = im.astype(cp.float32)
im /= 255
im -= mean
im /= std

# warmup for 10 times
for _ in range(10):
tmp = cp.random.randn(1, 3, 640, 640).astype(cp.float32)
binding_addrs['image'] = int(tmp.data.ptr)
context.execute_v2(list(binding_addrs.values()))

start = time.perf_counter()
binding_addrs['image'] = int(im.data.ptr)
context.execute_v2(list(binding_addrs.values()))
print(f'Cost {(time.perf_counter() - start) * 1000}ms')

nums = bindings['num_dets'].data
boxes = bindings['det_boxes'].data
scores = bindings['det_scores'].data
classes = bindings['det_classes'].data

num = int(nums[0][0])
box_img = boxes[0, :num].round().astype(cp.int32)
score_img = scores[0, :num]
clss_img = classes[0, :num]
for i, (box, score, clss) in enumerate(zip(box_img, score_img, clss_img)):
name = names[int(clss)]
color = colors[name]
cv2.rectangle(image_copy, box[:2].tolist(), box[2:].tolist(), color, 2)
cv2.putText(image_copy, name, (int(box[0]), int(box[1]) - 2), cv2.FONT_HERSHEY_SIMPLEX,
0.75, [225, 255, 255], thickness=2)

cv2.imshow('Result', cv2.cvtColor(image_copy, cv2.COLOR_RGB2BGR))
cv2.waitKey(0)
Loading

0 comments on commit ab791b1

Please sign in to comment.