Atom-based machine learning for estimating nucleophilicity and electrophilicity by predicting methyl cation affinities (MCAs) and methyl anion affinities (MAAs), respectively.
TRY IT HERE: https://www.esnuel.org
GitHub repository for our QM-based workflow is: https://github.com/jensengroup/esnuel
GitHub repository for our atom-based descriptor: https://github.com/NicolaiRee/smi2gcs
Clone this Github repository:
git clone https://github.com/jensengroup/ESNUEL_ML.git
Download and unpack models:
wget -O models.tar.xz https://sid.erda.dk/share_redirect/Ear6g6wl0G; tar xf models.tar.xz; mv models src/esnuelML/.
Download and unpack datasets (OBS! Not required for running the models):
wget -O data.tar.xz https://sid.erda.dk/share_redirect/c7LF5NaYvH; tar xf data.tar.xz
Install the Python environment using conda
:
conda env create -f etc/environment.yml && conda activate esnuelML
Finally, download the binaries of xtb version 6.7.0:
mkdir dep; cd dep; wget https://github.com/grimme-lab/xtb/releases/download/v6.7.0/xtb-6.7.0-linux-x86_64.tar.xz; tar -xvf ./xtb-6.7.0-linux-x86_64.tar.xz; cd ..
An example of usage via CLI command:
python src/esnuelML/predictor.py --smi 'CCOC(=O)CCN(SN(C)C(=O)Oc1cccc2c1OC(C)(C)C2)C(C)C'
The results are saved in a subfolder under "./desc_calcs" with a visual output of the predictions (saved in a .html file).
All the raw input and output files from the QM calculations can be downloaded here (compressed size: 29 GB, unpacked size: 355 GB):
wget -O calculations.tar.xz https://sid.erda.dk/share_redirect/hp3ttQcTgs; tar xf calculations.tar.xz
Our work is available as a preprint on ChemRxiv, where more information is available.
@article{ree2024esnuelML,
title = {Atom-Based Machine Learning for Estimating Nucleophilicity and Electrophilicity with Applications to Retrosynthesis and Chemical Stability},
url = {http://dx.doi.org/10.26434/chemrxiv-2024-2p7ch},
DOI = {10.26434/chemrxiv-2024-2p7ch},
author = {Ree, Nicolai and Wollschl\"{a}ger, Jan M. and G\"{o}ller, Andreas H. and Jensen, Jan H.},
year = {2024},
month = oct
}