Repo for teaching purposes in the Advanced Bioinformatics course, UMC Utrecht, 2016
For the Pandas Python examples please see the seperate file in the repository
###Example of how to use bio-vcf to extract genotypes:
bio-vcf --seval 's.gt' --num-threads=2 < PIK3CA.vcf
###Example of how to use python to extarct the Genotypes:
infile = open("PIK3CA.vcf",'r')
for line in infile:
header=""
if line.startswith("##"):
continue
if line.startswith("#"):
header = lines.strip().split('\t')
items = line.strip().split('\t')
gts = []
for sample in items[8:]:
gt=sample.split(":")[0]
gts.append(gt)
print(dict(zip(header[8:], gts))
SELECT Employees.FirstName, SUM(OrderDetails.Quantity*Products.Price) AS CASH FROM OrderDetails
JOIN Orders
ON OrderDetails.OrderID = Orders.OrderID
JOIN Employees
ON Orders.EmployeeID = Employees.EmployeeID
JOIN Products
ON OrderDetails.ProductID = Products.ProductID
GROUP BY Employees.FirstName
###CREATE TABLE
---
--- Table 'Samples'
---
CREATE TABLE samples (
id INTEGER PRIMARY KEY AUTO_INCREMENT NOT NULL,
sample_id INTEGER NOT NULL,
--- ... All fields you're interested in ...
);
---
--- Table 'Mutations'
---
CREATE TABLE mutations (
id INTEGER PRIMARY KEY AUTO_INCREMENT NOT NULL,
sample_id INTEGER NOT NULL,
chromosome INTEGER NOT NULL,
position INTEGER(12) NOT NULL,
known_identifier VARCHAR(255) NOT NULL,
reference_base VARCHAR(1) NOT NULL,
alternative_base VARCHAR(1) NOT NULL,
gt VARCHAR(3) NOT NULL,
quality FLOAT NOT NULL,
filter TEXT,
info TEXT,
format TEXT
);