Pytorch implementation of Neural Machine Translation using "Quasi-Recurrent Neural Networks", ICLR 2017
- NumPy >= 1.11.1
- Pytorch >= 0.2.0
- layer.py : Implementation of the quasi-recurrent layer
- model.py: Implementation of the Encoder-Decoder model using qrnn layer
- train.py: Code to train a NMT model
- decode.py: Code to translate a source file using a trained model
To train a quasi-rnn NMT model,
$ python train.py --kernel_size 3 \
--hidden_size 640 \
--emb_size 500 \
--num_enc_symbols 30000 \
--num_dec_symbols 30000 ...
To run the trained model for translation,
$ python eval.py --model_path $path_to_model \
--decode_input $path_to_source \
--decode_output $path_to_output
--max_decode_step 300 \
--batch_size 30 ...
For simplicity, we used greedy decoding at each time step, not the beam search decoding.
For more in-depth exploration, QRNN API for Pytorch is available: https://github.com/salesforce/pytorch-qrnn
For any comments and feedbacks, please email me at [email protected] or open an issue here.