-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
8644c97
commit 5f7620e
Showing
10 changed files
with
312,937 additions
and
73 deletions.
There are no files selected for viewing
146 changes: 73 additions & 73 deletions
146
...plication on integrating mouse brain datasets/plot_integrating_mouse_brain_datasets.ipynb
Large diffs are not rendered by default.
Oops, something went wrong.
108,300 changes: 108,300 additions & 0 deletions
108,300
paper/Benchmarking with real and synthetic datasets/Monocle3/monocle3_meta.txt
Large diffs are not rendered by default.
Oops, something went wrong.
108,300 changes: 108,300 additions & 0 deletions
108,300
paper/Benchmarking with real and synthetic datasets/Monocle3/monocle3_umap.txt
Large diffs are not rendered by default.
Oops, something went wrong.
484 changes: 484 additions & 0 deletions
484
paper/Benchmarking with real and synthetic datasets/Monocle3/plot_moncle.Rmd
Large diffs are not rendered by default.
Oops, something went wrong.
143 changes: 143 additions & 0 deletions
143
paper/Benchmarking with real and synthetic datasets/Monocle3/prepare_monocle_data.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
import scanpy as sc | ||
import numpy as np | ||
import pandas as pd | ||
import os | ||
from scipy import sparse | ||
|
||
import sys | ||
sys.path.append("../../VITAE") | ||
|
||
import importlib | ||
|
||
import VITAE | ||
|
||
# Nature Cortex | ||
dd=sc.read("transform.h5ad") | ||
metadata = pd.read_csv('metaData_scDevSC.txt', delimiter='\t', index_col = 0) | ||
|
||
dd.obs['Day'] = metadata['orig_ident'][1:metadata.shape[0]] | ||
dd.obs['Clusters'] = metadata['New_cellType'][1:metadata.shape[0]] | ||
dd.obs['Clusters'] = pd.Categorical(dd.obs['Clusters'], categories = [ | ||
'Apical progenitors', 'Intermediate progenitors', 'Migrating neurons', | ||
'Immature neurons', 'Cajal Retzius cells', 'CThPN', 'SCPN', | ||
'NP', 'Layer 6b', 'Layer 4', 'DL CPN', 'DL_CPN_1', 'DL_CPN_2', 'UL CPN', | ||
'Interneurons', 'Astrocytes', 'Oligodendrocytes', 'Microglia', | ||
'Cycling glial cells', 'Ependymocytes', 'Endothelial cells', | ||
'VLMC', 'Pericytes','Red blood cells', 'Doublet', 'Low quality cells' | ||
], ordered = True) | ||
|
||
|
||
dd.obs['S_Score'] = pd.to_numeric(metadata['S_Score'][1:metadata.shape[0]]) | ||
dd.obs['G2M_Score'] = pd.to_numeric(metadata['G2M_Score'][1:metadata.shape[0]]) | ||
|
||
dd = dd[dd.obs['Clusters'].isin(['Doublet', 'Low quality cells']) == False] | ||
|
||
dd.obs.index=dd.obs.index.tolist() | ||
dd.obs['Day']=dd.obs['Day'].tolist() | ||
dd.obs['Clusters']=dd.obs['Clusters'].tolist() | ||
dd.obs['S_Score']=dd.obs['S_Score'].tolist() | ||
dd.obs['G2M_Score']=dd.obs['G2M_Score'].tolist() | ||
|
||
sc.pp.highly_variable_genes(dd, flavor = "seurat") | ||
sc.pp.scale(dd, max_value=10) | ||
|
||
merge = np.array([np.nan] * dd.shape[0]) | ||
merge[(dd.obs["Day"] == "E18_S1").values] = 1 | ||
merge[(dd.obs["Day"] == "E18_S3").values] = 2 | ||
dd.obs["merge_day_18"] = merge | ||
|
||
merge = np.array([np.nan] * dd.shape[0]) | ||
merge[dd.obs["Day"] == "P1"] = 1 | ||
merge[dd.obs["Day"] == "P1_S1"] = 2 | ||
dd.obs["merge_P1"] = merge | ||
|
||
dd.obs["merge_day_18"] = dd.obs["merge_day_18"].astype("category") | ||
dd.obs["merge_P1"] = dd.obs["merge_P1"].astype("category") | ||
|
||
# Mouse | ||
|
||
from VITAE.utils import load_data | ||
mouse = load_data(path = "../data", file_name = "mouse_brain_merged") | ||
|
||
sc.pp.normalize_total(mouse, target_sum=1e4) | ||
sc.pp.log1p(mouse) | ||
sc.pp.highly_variable_genes(mouse, min_mean=0.0125, max_mean=3, min_disp=0.5) | ||
|
||
sc.pp.scale(mouse, max_value=10) | ||
|
||
dd.obs["Source"] = 2 | ||
|
||
# merge | ||
|
||
temp_day = mouse.obs.index.values.copy() | ||
temp_day = [x[:3] for x in temp_day] | ||
mouse.obs["Day"] = temp_day | ||
|
||
mouse.obs.columns = ["Clusters","S_Score","G2M_Score","Source","Day"] | ||
|
||
dd = dd.concatenate(mouse,join="inner") | ||
|
||
group_dict = {"Immature Neuron" : "Immature neurons", | ||
"NEC":"Apical progenitors", | ||
"RGC":"Apical progenitors", | ||
"Layer I":"Cajal Retzius cells", | ||
"OPC":"Oligodendrocytes", | ||
"Interneurons":"Interneurons", | ||
"Endothelial Cell":"Endothelial cells", | ||
"Microglia":"Microglia", | ||
"Pericyte":"Pericytes", | ||
"Intermediate progenitors":"IPC"} | ||
|
||
c = dd.obs["Clusters"].values.copy() | ||
c = [x if group_dict.get(x) == None else group_dict.get(x) for x in c] | ||
dd.obs["tidy_clusters"] = c.copy() | ||
|
||
dd.obs["tidy_clusters"] = c.copy() | ||
|
||
a = np.zeros(dd.shape[0]) | ||
a[dd.obs["Source"] == 0] = 1 | ||
dd.obs["cov1"] = a | ||
|
||
a = np.zeros(dd.shape[0]) | ||
a[dd.obs["Source"] == 1] = 1 | ||
dd.obs["cov2"] = a | ||
|
||
a = np.zeros(dd.shape[0]) | ||
a[dd.obs["Source"] == 2] = 1 | ||
dd.obs["cov3"] = a | ||
|
||
a = np.array([np.nan] * dd.shape[0]) | ||
#here is where I change | ||
a[dd.obs["Day"] == "E18"] = 1 | ||
a[dd.obs["Day"] == "E18_S1"] = 2 | ||
a[dd.obs["Day"] == "E18_S3"] = 3 | ||
dd.obs["merge_18"] = a | ||
|
||
a = np.array([np.nan] * dd.shape[0]) | ||
a[dd.obs["Day"] == "P1"] = 1 | ||
a[dd.obs["Day"] == "P1_S1"] = 2 | ||
dd.obs["merge_P1"] = a | ||
|
||
dd.obs["merge_18"] = dd.obs["merge_18"].astype("category") | ||
dd.obs["merge_P1"] = dd.obs["merge_P1"].astype("category") | ||
|
||
a = dd.obs["tidy_clusters"].values.copy().astype(str) | ||
a[(dd.obs["Day"].isin(["E14","E15","E16"])) & (a == "SCPN")] = "SCPN1" | ||
dd.obs["Cluster2"] = a.copy() | ||
|
||
dd.X = dd.X.astype(np.float16) | ||
dd.obs["S_Score"] = dd.obs["S_Score"].astype(np.float16) | ||
dd.obs["G2M_Score"] = dd.obs["G2M_Score"].astype(np.float16) | ||
|
||
dd.var["highly_variable"] = dd.var["highly_variable-0"] | dd.var["highly_variable-1"] | ||
dd.var = dd.var.drop(['highly_variable-0', 'means-0', 'dispersions-0', 'dispersions_norm-0', 'mean-0', 'std-0', 'highly_variable-1', 'means-1', 'dispersions-1', 'dispersions_norm-1', 'mean-1', 'std-1'],axis=1) | ||
dd.obs = dd.obs.drop(['merge_day_18', 'merge_P1', 'batch', 'tidy_clusters', 'cov1', 'cov2', 'cov3', 'merge_18'],axis=1) | ||
|
||
dd = dd[:,dd.var["highly_variable"]].copy() | ||
|
||
## transpose because monocle need transpose here. | ||
dd.T.write_h5ad("monocle_adata_forR_trans_highly.h5ad") | ||
|
||
|
||
|
||
|
Oops, something went wrong.