Skip to content

Manage and use pre-trained deep neural networks with a common interface for build, compile, fit, evaluate, kfold, cross validate, and predict lifecycle phases using Keras and Tensorflow

License

Notifications You must be signed in to change notification settings

jay-johnson/antinex-utils

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

AntiNex AI Utilities

Standalone utilities for training AI.

Travis AntiNex AI Utilities Tests Read the Docs AntiNex AI Utilities Tests

Used in:

https://github.com/jay-johnson/train-ai-with-django-swagger-jwt

Install

pip install antinex-utils

Development

  1. Set up the repository

    mkdir -p -m 777 /opt/antinex
    git clone https://github.com/jay-johnson/antinex-utils.git /opt/antinex/utils
    cd /opt/antinex/utils
    
  2. Set up the virtual env and install

    virtualenv -p python3 ~/.venvs/antinexutils && source ~/.venvs/antinexutils/bin/activate && pip install -e .
    

Testing

Run all

python setup.py test

Run a test case

python -m unittest tests.test_classification.TestClassification.test_classification_deep_dnn
python -m unittest tests.test_regression.TestRegression.test_dataset_regression_using_scaler

AntiNex Stack Status

AntiNex AI Utilities is part of the AntiNex stack:

Component Build Docs Link Docs Build
REST API Travis Tests Docs Read the Docs REST API Tests
Core Worker Travis AntiNex Core Tests Docs Read the Docs AntiNex Core Tests
Network Pipeline Travis AntiNex Network Pipeline Tests Docs Read the Docs AntiNex Network Pipeline Tests
AI Utils Travis AntiNex AI Utils Tests Docs Read the Docs AntiNex AI Utils Tests
Client Travis AntiNex Client Tests Docs Read the Docs AntiNex Client Tests

Linting

flake8 .

pycodestyle --exclude=.tox,.eggs

License

Apache 2.0 - Please refer to the LICENSE for more details

About

Manage and use pre-trained deep neural networks with a common interface for build, compile, fit, evaluate, kfold, cross validate, and predict lifecycle phases using Keras and Tensorflow

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages