Skip to content

jaroslaw1007/CLIT

Repository files navigation

Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution (CLIT)

This repository contains the PyTorch based official implementation of the paper titled:
Cascaded Local Implicit Transformer for Arbitrary-Scale Super-Resolution CVPR 2023.

Dependencies

  • Python >= 3.7.0
  • PyTorch >= 1.8.0

Train

EDSR-Baseline

Stage1: python train.py --config configs/train/train_edsr_baseline_lit.yaml --name lit_edsr

Stage2: python train.py --config configs/train/train_edsr_baseline_clit2.yaml --name clit_edsr2

Stage3: python train.py --config configs/train/train_edsr_baseline_clit3.yaml --name clit_edsr3

RDN

Stage1: python train.py --config configs/train/train_rdn_lit.yaml --name lit_rdn

Stage1: python train.py --config configs/train/train_rdn_clit2.yaml --name clit_rdn2

Stage1: python train.py --config configs/train/train_rdn_clit3.yaml --name clit_rdn3

SwinIR

Stage1: python train.py --config configs/train/train_swinir_lit.yaml --name lit_swinir

Stage2: python train.py --config configs/train/train_swinir_clit2.yaml --name clit_swinir2

Stage3: python train.py --config configs/train/train_swinir_clit3.yaml --name clit_swinir3

$\ast$ Please note that, if you want to cascadedly train stage2 or stage3 CLIT, you need to modified the "pre_train" property in the configuration so as to load previous stage1 or stage2 model as the pre-trained model.

Ex: train the stage2 CLIT using edsr-baseline model

pre_train: save/lit_edsr/epoch-last.pth

Test

EDSR-Baseline or RDN

bash eval.sh "put the model name here"

SwinIR

bash eval_swinir.sh "put the model name here"

Demo Attention Maps

python demo.py --model save/lit_rdn/epoch-last.pth --img_path assests/0868x4.png --scale 6

Inputs Attention Heads

Additional Quantitative Results

Div2k

Method (SSIM)
x2 x3 x4 x6 x12 x18 x24 x30
EDSR-Baseline-CLIT 0.9397 0.8790 0.8266 0.7503 0.6439 0.6006 0.5771 0.5629
RDN-CLIT 0.9418 0.8829 0.8319 0.7564 0.6497 0.6053 0.5804 0.5657
SwinIR-CLIT 0.9436 0.8859 0.8357 0.7608 0.6534 0.6080 0.5830 0.5675

Set5

Method (SSIM)
x2 x3 x4 x6 x8
RDN-CLIT 0.9474 0.9101 0.8760 0.8053 0.7451
SwinIR-CLIT 0.9482 0.9117 0.8787 0.8131 0.7521

Set14

Method (SSIM)
x2 x3 x4 x6 x8
RDN-CLIT 0.9023 0.8227 0.7619 0.6748 0.6184
SwinIR-CLIT 0.9030 0.8262 0.7656 0.6789 0.6210

B100

Method (SSIM)
x2 x3 x4 x6 x8
RDN-CLIT 0.8962 0.8003 0.7304 0.6404 0.5876
SwinIR-CLIT 0.8975 0.8029 0.7341 0.6443 0.5907

Urban100

Method (SSIM)
x2 x3 x4 x6 x8
RDN-CLIT 0.9298 0.8568 0.7942 0.6918 0.6224
SwinIR-CLIT 0.9335 0.8651 0.8051 0.7070 0.6369

Acknowledgements

This repo is built on LIIF and LTE. Thanks the authors for their contributions and generosity.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published