forked from NVIDIA/TensorRT-LLM
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathattention.py
1614 lines (1445 loc) · 74.9 KB
/
attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from typing import List, Optional
import numpy as np
import tensorrt as trt
from .._common import default_net, precision
from .._utils import (fp32_array, int32_array, is_same_dtype, trt_dtype_to_np,
trt_dtype_to_str, trt_gte_10)
from ..functional import (ACT2FN, AllReduceFusionParams, AttentionMaskType,
Conditional, PositionEmbeddingType,
RopeEmbeddingUtils, RotaryScalingType, Tensor, arange,
bert_attention, cast, clip, concat, constant,
embedding, expand, expand_dims, expand_mask,
generate_alibi_biases, generate_alibi_slopes,
gpt_attention, matmul)
from ..functional import max as fmax
from ..functional import (minimum, repeat_interleave, shape, slice, softmax,
split, unsqueeze, where)
from ..module import Module
from ..parameter import Parameter
from ..quantization import QuantMode
from ..quantization.functional import dequantize, quantize
from .linear import ColumnLinear, QKVColumnLinear, RowLinear
from .lora import LoraRuntimeParams
from .normalization import LayerNorm
from ..functional import maximum # isort:skip
def make_causal_mask(bsz, tgt_len, past_key_values_length, dtype):
_range = arange(start=constant(int32_array(0)),
end=tgt_len,
dtype=trt_dtype_to_str(dtype))
mask = repeat_interleave(_range, tgt_len, 0).view(concat([tgt_len,
tgt_len]))
mask = where(mask < mask.transpose(-1, -2), 1.0, 0.0)
zero = constant(fp32_array(0))
zero = expand_dims(zero, [0, 1])
zero = expand(zero, concat([tgt_len, past_key_values_length]))
mask = concat([zero, mask], dim=1)
mask *= np.finfo(trt_dtype_to_np(dtype)).min.item()
mask = mask.view(concat([1, 1, tgt_len, tgt_len + past_key_values_length]))
mask = expand(mask,
concat([bsz, 1, tgt_len, tgt_len + past_key_values_length]))
return mask
def compute_relative_bias(query_length,
key_length,
num_buckets,
max_distance,
bidirectional,
rel_attn_table,
tp_size=1,
tp_group=None,
tp_rank=None):
def make_relative_position_bucket(relative_position, bidirectional,
num_buckets, max_distance):
relative_buckets = 0
if bidirectional:
num_buckets //= 2
relative_buckets += where(relative_position > 0, num_buckets, 0)
relative_position = relative_position.abs()
else:
relative_position = 0 - minimum(relative_position, 0)
max_exact = num_buckets // 2
is_small = relative_position < max_exact
max_exact_fp = constant(fp32_array(max_exact))
tmp = cast(relative_position, "float32") / max_exact_fp
tmp = tmp.log()
const1 = math.log(max_distance / max_exact)
const2 = constant(fp32_array(num_buckets - max_exact))
relative_position_if_large = tmp / const1 * const2
relative_position_if_large = cast(relative_position_if_large, "int32")
relative_position_if_large = max_exact + relative_position_if_large
relative_position_if_large = minimum(relative_position_if_large,
num_buckets - 1)
relative_buckets += where(is_small, relative_position,
relative_position_if_large)
return relative_buckets
context_position = arange(start=constant(int32_array(0)),
end=query_length,
dtype=trt_dtype_to_str(trt.int32))
context_position = unsqueeze(context_position, -1)
memory_position = arange(start=constant(int32_array(0)),
end=key_length,
dtype=trt_dtype_to_str(trt.int32))
memory_position = unsqueeze(memory_position, 0)
relative_position = memory_position - context_position
relative_position_bucket = make_relative_position_bucket(
relative_position, # shape (query_length, key_length)
bidirectional,
num_buckets,
max_distance,
)
# shape (query_length, key_length, num_heads)
values = embedding(relative_position_bucket,
rel_attn_table,
tp_size=tp_size,
tp_group=tp_group,
tp_rank=tp_rank)
# shape (1, num_heads, query_length, key_length)
values = unsqueeze(values.permute([2, 0, 1]), 0)
return values
class AttentionParams(object):
def __init__(self,
sequence_length: Tensor = None,
context_lengths: Tensor = None,
host_context_lengths: Tensor = None,
max_context_length: int = None,
host_request_types: Tensor = None,
encoder_input_lengths: Tensor = None,
encoder_max_input_length: Tensor = None):
self.sequence_length = sequence_length
self.context_lengths = context_lengths
self.host_context_lengths = host_context_lengths
# max allowed context length. Required to
# compute scratch memory size.
self.max_context_length = max_context_length
self.host_request_types = host_request_types
self.encoder_input_lengths = encoder_input_lengths
self.encoder_max_input_length = encoder_max_input_length
def is_valid_cross_attn(self, do_cross_attention):
if do_cross_attention:
if self.encoder_input_lengths is None:
return False
if self.encoder_max_input_length is None:
return False
return True
def is_valid(self, gpt_attention_plugin, remove_input_padding):
if gpt_attention_plugin:
if self.sequence_length is None:
return False
if self.context_lengths is None:
return False
if self.host_request_types is None:
return False
if self.max_context_length is None:
return False
if remove_input_padding:
if self.host_context_lengths is None:
return False
if not gpt_attention_plugin:
return False
return True
class SpecDecodingParams:
def __init__(self,
spec_decoding_generation_lengths: Tensor = None,
spec_decoding_position_offsets: Tensor = None,
spec_decoding_packed_mask: Tensor = None):
self.spec_decoding_generation_lengths = spec_decoding_generation_lengths
self.spec_decoding_position_offsets = spec_decoding_position_offsets
self.spec_decoding_packed_mask = spec_decoding_packed_mask
class KeyValueCacheParams:
def __init__(self,
past_key_value: List[Tensor] = None,
host_past_key_value_lengths: Tensor = None,
host_max_attention_window_sizes: Tensor = None,
host_sink_token_length: Tensor = None,
kv_cache_block_offsets: Tensor = None,
host_kv_cache_block_offsets: Tensor = None,
host_kv_cache_pool_pointers: Tensor = None,
cache_indirection: Tensor = None,
past_key_value_length: Tensor = None,
cross_kv_cache_block_offsets: Tensor = None,
host_cross_kv_cache_block_offsets: Tensor = None,
host_cross_kv_cache_pool_pointers: Tensor = None):
self.past_key_value = past_key_value
self.host_past_key_value_lengths = host_past_key_value_lengths
self.host_max_attention_window_sizes = host_max_attention_window_sizes
self.host_sink_token_length = host_sink_token_length
self.kv_cache_block_offsets = kv_cache_block_offsets
self.host_kv_cache_block_offsets = host_kv_cache_block_offsets
self.host_kv_cache_pool_pointers = host_kv_cache_pool_pointers
self.cross_kv_cache_block_offsets = cross_kv_cache_block_offsets
self.host_cross_kv_cache_block_offsets = host_cross_kv_cache_block_offsets
self.host_cross_kv_cache_pool_pointers = host_cross_kv_cache_pool_pointers
self.cache_indirection = cache_indirection
# self.past_key_value_length = past_key_value_length
def get_first_past_key_value(self):
if self.past_key_value is None:
return None
return self.past_key_value[0]
def fill_none_tensor_list(self, list_size):
if self.past_key_value is None:
self.past_key_value = tuple([None] * list_size)
def is_valid(self, gpt_attention_plugin):
if gpt_attention_plugin:
if self.host_past_key_value_lengths is None:
return False
if self.host_max_attention_window_sizes is None:
return False
if self.host_sink_token_length is None:
return False
if self.cache_indirection is None:
return False
return True
class BlockSparseAttnParams:
def __init__(self,
block_size: int = 64,
homo_head_pattern: bool = False,
num_local_blocks: int = 16,
vertical_stride: int = 8):
self.block_size = block_size
self.homo_head_pattern = homo_head_pattern
self.num_local_blocks = num_local_blocks
self.vertical_stride = vertical_stride
class Attention(Module):
def __init__(self,
*,
local_layer_idx,
hidden_size,
num_attention_heads,
num_kv_heads=None,
max_position_embeddings=1024,
num_layers=1,
apply_query_key_layer_scaling=False,
attention_head_size=None,
qk_layernorm=False,
inner_layernorm=False,
eps=1e-05,
attention_mask_type=AttentionMaskType.padding,
bias=True,
dtype=None,
position_embedding_type=PositionEmbeddingType.learned_absolute,
rotary_embedding_base=10000.0,
rotary_embedding_scaling=None,
rotary_embedding_percentage=1.0,
rope_scaling_short_factors=None,
rope_scaling_long_factors=None,
rope_scaling_short_mscale=None,
rope_scaling_long_mscale=None,
original_max_position_embeddings=1024,
tp_group=None,
tp_size=1,
tp_rank=0,
quant_mode: QuantMode = QuantMode(0),
q_scaling=1.0,
cross_attention=False,
relative_attention=False,
max_distance=0,
num_buckets=0,
dense_bias=None,
clip_qkv=None,
alibi_bias_max=8,
skip_cross_qkv=False,
max_attn_value=0.0,
block_sparse_params=None,
use_implicit_relative_attention=False):
super().__init__()
self.local_layer_idx = local_layer_idx
self.cross_attention = cross_attention
self.attention_mask_type = attention_mask_type
self.attention_head_size = hidden_size // num_attention_heads if attention_head_size is None else attention_head_size
self.num_kv_heads = num_kv_heads
assert num_attention_heads % tp_size == 0, \
"num_attention_heads must be divisible by tp_size"
self.num_attention_heads = num_attention_heads // tp_size
self.num_attention_kv_heads = (
num_kv_heads + tp_size - 1
) // tp_size if num_kv_heads is not None else self.num_attention_heads
self.hidden_size = hidden_size
self.attention_hidden_size = self.attention_head_size * self.num_attention_heads
self.max_position_embeddings = max_position_embeddings
self.original_max_position_embeddings = original_max_position_embeddings
self.bias = bias
self.tp_group = tp_group
self.tp_size = tp_size
self.tp_rank = tp_rank
self.dtype = dtype
self.dense_bias = dense_bias
if dense_bias is None:
self.dense_bias = bias
self.num_layers = num_layers
self.apply_query_key_layer_scaling = apply_query_key_layer_scaling
self.norm_factor = math.sqrt(self.attention_head_size)
self.q_scaling = q_scaling
if self.apply_query_key_layer_scaling:
self.norm_factor *= self.num_layers
self.q_scaling *= self.num_layers
# Whether to scale ALiBi bias. Mathematically, it's equivalent to
# normalizing QK after adding bias.
# - False, inv_sqrt_Dh * Q*K^T + alibi_bias
# - True, inv_sqrt_Dh * Q*K^T + inv_sqrt_Dh * alibi_bias
self.scale_alibi_bias = position_embedding_type == PositionEmbeddingType.alibi_with_scale
self.alibi_bias_max = alibi_bias_max
self.position_embedding_type = position_embedding_type
self.relative_attention = relative_attention
self.max_distance = max_distance
self.num_buckets = num_buckets
self.rotary_embedding_base = rotary_embedding_base
self.rotary_embedding_scaling = rotary_embedding_scaling
self.rotary_embedding_scale_type = RotaryScalingType.none
self.rotary_embedding_scale = 1.0
self.rotary_embedding_percentage = rotary_embedding_percentage
self.use_implicit_relative_attention = self.relative_attention and use_implicit_relative_attention
if rotary_embedding_scaling is not None:
assert rotary_embedding_scaling["type"] in ["linear", "dynamic"]
self.rotary_embedding_scale_type = RotaryScalingType.linear if rotary_embedding_scaling[
"type"] == "linear" else RotaryScalingType.dynamic
self.rotary_embedding_scale = rotary_embedding_scaling["factor"]
self.rotary_embedding_dim = 0
if self.position_embedding_type.is_rope():
self.rotary_embedding_dim = int(self.attention_head_size *
rotary_embedding_percentage)
if self.position_embedding_type == PositionEmbeddingType.long_rope:
embed_positions_short_factors, embed_positions_long_factors, \
embed_positions_short_factors_for_attention_plugin, \
embed_positions_long_factors_for_attention_plugin, mscale \
= RopeEmbeddingUtils.create_sinusoidal_positions_long_rope(
self.max_position_embeddings,
original_max_position_embeddings, self.rotary_embedding_dim,
self.rotary_embedding_base, rope_scaling_short_factors,
rope_scaling_long_factors, rope_scaling_short_mscale, rope_scaling_long_mscale)
if rope_scaling_short_mscale is not None:
assert rope_scaling_long_mscale is not None
short_mscale = rope_scaling_short_mscale
long_mscale = rope_scaling_long_mscale
else:
short_mscale = long_mscale = mscale
rope_scaling_short_factors = np.array(
rope_scaling_short_factors).reshape(1, -1)
rope_scaling_long_factors = np.array(
rope_scaling_long_factors).reshape(1, -1)
self.register_parameter(
'embed_positions_short_factors',
Parameter(embed_positions_short_factors,
dtype='float32',
is_buffer=True))
self.register_parameter(
'embed_positions_long_factors',
Parameter(embed_positions_long_factors,
dtype='float32',
is_buffer=True))
self.register_parameter(
'embed_positions_short_factors_for_attention_plugin',
Parameter(
embed_positions_short_factors_for_attention_plugin,
dtype='float32',
is_buffer=True))
self.register_parameter(
'embed_positions_long_factors_for_attention_plugin',
Parameter(embed_positions_long_factors_for_attention_plugin,
dtype='float32',
is_buffer=True))
self.short_mscale = short_mscale
self.long_mscale = long_mscale
self.register_parameter(
'rope_scaling_short_factors',
Parameter(rope_scaling_short_factors,
dtype='float32',
is_buffer=True))
self.register_parameter(
'rope_scaling_long_factors',
Parameter(rope_scaling_long_factors,
dtype='float32',
is_buffer=True))
else:
# Rotary cos/sin cache.
embed_positions = RopeEmbeddingUtils.create_sinusoidal_positions(
self.max_position_embeddings,
self.rotary_embedding_dim,
)
self.register_parameter(
'embed_positions',
Parameter(embed_positions, dtype='float32', is_buffer=True))
embed_positions_for_gpt_attention = RopeEmbeddingUtils.create_sinusoidal_positions_for_attention_plugin(
self.max_position_embeddings, self.rotary_embedding_dim,
self.rotary_embedding_base, self.rotary_embedding_scale,
self.rotary_embedding_scale_type)
self.register_parameter(
'embed_positions_for_gpt_attention',
Parameter(embed_positions_for_gpt_attention,
dtype='float32',
is_buffer=True))
elif self.position_embedding_type.is_alibi():
alibi_scale = 1. / self.norm_factor if self.scale_alibi_bias else 1.
alibi_slopes = generate_alibi_slopes(
self.num_attention_heads * self.tp_size,
tp_size=self.tp_size,
tp_rank=self.tp_rank,
alibi_scale=alibi_scale,
alibi_bias_max=self.alibi_bias_max)
self.register_parameter(
'alibi_slopes',
Parameter(alibi_slopes, dtype='float32', is_buffer=True))
self.quant_mode = quant_mode
self.max_attn_value = max_attn_value
self.register_parameter('kv_cache_scaling_factor', None)
self.register_parameter('attention_output_orig_quant_scale', None)
self.block_sparse_params = block_sparse_params if block_sparse_params is not None else BlockSparseAttnParams(
)
# The output feature size is therefore (h/tp + 2*kvh/tp) * d, where h is num_heads,
# d is head_size, kvh is the num_kv_heads and tp is tensor_parallel_size.
# In ColumnLinear op, the output dim is calculated by (h + 2*kvh) * d / tp,
# which matches the desired output size (h/tp + 2*kvh/tp) * d after splitting
# out dim is not necessarily hidden_size + kv specific size (in MQA/GQA), but num_heads * heads_size
# example: d_model != num_heads * head_size in Flan-T5/ByT5/Gemma
self.qkv = QKVColumnLinear(
hidden_size,
tp_size * self.num_attention_heads * self.attention_head_size +
(2 * tp_size * self.num_attention_kv_heads *
self.attention_head_size),
bias=bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size,
gather_output=False)
self.dense = RowLinear(tp_size * self.num_attention_heads *
self.attention_head_size,
hidden_size,
bias=self.dense_bias,
dtype=dtype,
tp_group=tp_group,
tp_size=tp_size)
# see optimize_model's add_lora for LoRA initialization
self.qkv_lora = None
# per-layer relative attention table
if self.use_implicit_relative_attention:
self.rel_attn_table = Parameter(shape=(num_attention_heads //
tp_size, num_buckets),
dtype=dtype)
self.qk_layernorm = qk_layernorm
if self.qk_layernorm:
self.q_layernorm = LayerNorm(self.attention_head_size, dtype=dtype)
self.k_layernorm = LayerNorm(self.attention_head_size, dtype=dtype)
self.inner_layernorm = LayerNorm(self.hidden_size, dtype=dtype,
eps=eps) if inner_layernorm else None
if clip_qkv is not None:
self.clip_qkv = fp32_array([clip_qkv])
else:
self.clip_qkv = None
self.skip_cross_qkv = skip_cross_qkv
def forward(self,
hidden_states: Tensor,
attention_mask=None,
use_cache=False,
spec_decoding_params=None,
kv_cache_params=None,
attention_params=None,
encoder_output: Optional[Tensor] = None,
position_embedding=None,
norm_before_bmm1=False,
lora_layer_params=None,
cross_kv_cache_gen: Optional[Tensor] = None,
cross_qkv_reuse: Optional[Tensor] = None,
reduce_fusion_params: Optional[AllReduceFusionParams] = None):
assert isinstance(hidden_states, Tensor)
spec_decoding_params = SpecDecodingParams(
) if spec_decoding_params is None else spec_decoding_params
alibi_slopes = None
if self.position_embedding_type.is_alibi():
alibi_slopes = self.alibi_slopes.value
if default_net().plugin_config.gpt_attention_plugin:
alibi_slopes = cast(alibi_slopes, hidden_states.dtype)
qkv_lora_params = None
if lora_layer_params is not None:
if not self.cross_attention:
qkv_lora_params = lora_layer_params.get_runtime_params(
0, "attn_qkv")
else:
qkv_lora_params = lora_layer_params.get_runtime_params(
0, "cross_attn_qkv")
unfuse_qkv_gemm = self.qkv is None
if unfuse_qkv_gemm:
qkv_gemm = [self.q, self.k, self.v]
qkv = [gemm(hidden_states) for gemm in qkv_gemm]
if default_net(
).plugin_config.lora_plugin and qkv_lora_params is not None:
lora = self.qkv.lora(hidden_states, qkv_lora_params)
kv_size = self.attention_head_size * self.num_attention_kv_heads
qkv_lora = split(lora,
[self.attention_hidden_size, kv_size, kv_size],
dim=1)
qkv = [tensor + lora for tensor, lora in zip(qkv, qkv_lora)]
else:
qkv = self.qkv(hidden_states, qkv_lora_params)
if self.clip_qkv is not None:
qkv = clip(qkv, -self.clip_qkv, self.clip_qkv)
if default_net().plugin_config.remove_input_padding:
if unfuse_qkv_gemm:
for tensor in qkv:
assert tensor.ndim() == 2
else:
assert qkv.ndim() == 2
if default_net(
).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None:
if not self.cross_attention:
q_lora_params = lora_layer_params.get_runtime_params(
0, "attn_q")
k_lora_params = lora_layer_params.get_runtime_params(
0, "attn_k")
v_lora_params = lora_layer_params.get_runtime_params(
0, "attn_v")
else:
q_lora_params = lora_layer_params.get_runtime_params(
0, "cross_attn_q")
k_lora_params = lora_layer_params.get_runtime_params(
0, "cross_attn_k")
v_lora_params = lora_layer_params.get_runtime_params(
0, "cross_attn_v")
assert (q_lora_params is not None and k_lora_params is not None and v_lora_params is not None) or \
(q_lora_params is None and k_lora_params is None and v_lora_params is None), "q_lora_params, k_lora_params and v_lora_params should be all enabled or all disabled at the same time."
if q_lora_params is not None and k_lora_params is not None and v_lora_params is not None:
qkv_lora_runtime_params = LoraRuntimeParams(
lora_ranks=[
q_lora_params.lora_ranks[0],
k_lora_params.lora_ranks[0],
v_lora_params.lora_ranks[0],
],
lora_weights_pointers=[
q_lora_params.lora_weights_pointers[0],
k_lora_params.lora_weights_pointers[0],
v_lora_params.lora_weights_pointers[0],
],
host_request_types=q_lora_params.host_request_types,
host_context_lengths=q_lora_params.host_context_lengths,
max_context_length=q_lora_params.max_context_length,
max_encoder_context_length=q_lora_params.
max_encoder_context_length,
host_encoder_input_lengths=q_lora_params.
host_encoder_input_lengths,
)
q_lora, k_lora, v_lora = self.qkv_lora(hidden_states,
qkv_lora_runtime_params)
qkv_lora = concat([q_lora, k_lora, v_lora],
dim=q_lora.rank() - 1)
qkv = qkv + qkv_lora
if self.qk_layernorm:
base_shape = shape(qkv, 0) if qkv.ndim() == 2 else concat(
[shape(qkv, 0), shape(qkv, 1)])
# here we assume that q, k and v have the same number of attention heads
# TODO: allow different number of attention heads for q, k and v.
qkv = qkv.view(
concat([
base_shape, self.num_attention_heads, 3,
self.attention_head_size
]))
query, key, value = split(qkv, 1, dim=qkv.ndim() - 2)
q_shape = concat([
base_shape, self.num_attention_heads, self.attention_head_size
])
query = query.view(q_shape)
key = key.view(q_shape)
value = value.view(q_shape)
query = self.q_layernorm(query)
key = self.k_layernorm(key)
qkv = concat([query, key, value], dim=query.ndim() - 2)
qkv = qkv.view(concat([base_shape, self.attention_hidden_size * 3]))
if self.position_embedding_type == PositionEmbeddingType.chatglm:
qkv = RopeEmbeddingUtils.apply_rotary_pos_emb_chatglm(
qkv,
position_embedding,
self.num_attention_heads,
self.attention_head_size,
self.max_position_embeddings,
self.rotary_embedding_scale,
default_net().plugin_config.remove_input_padding,
)
self.rotary_embedding_scale_type = RotaryScalingType.none
self.rotary_embedding_scale = 1.0
paged_kv_cache = default_net().plugin_config.paged_kv_cache
assert attention_params is None or attention_params.is_valid(
default_net().plugin_config.gpt_attention_plugin,
default_net().plugin_config.remove_input_padding)
assert kv_cache_params is None or kv_cache_params.is_valid(
default_net().plugin_config.gpt_attention_plugin)
past_key_value = None if kv_cache_params is None else kv_cache_params.get_first_past_key_value(
)
# if cross attention, cross QKV only needs to be calculated once in the
# 1st decoding step --> write to cross KV cache --> remains constant
# during the entire decoding steps.
# 1st and >1st steps are distinguished by a boolean tensor `cross_kv_cache_gen` passed at runtime
# also, cross KV cache max length is set from encoder output seqlen,
# this maps to the max context length concept in decoder-only models
cross_qkv = None
if self.cross_attention and encoder_output:
assert isinstance(encoder_output, Tensor)
def compute_cross_qkv(encoder_output):
cross_qkv = self.qkv(encoder_output, qkv_lora_params)
if default_net(
).plugin_config.lora_plugin and qkv_lora_params is None and lora_layer_params is not None:
cross_q_lora, cross_k_lora, cross_v_lora = self.qkv_lora(
encoder_output,
qkv_lora_runtime_params,
is_cross_attention=True)
cross_qkv_lora = concat(
[cross_q_lora, cross_k_lora, cross_v_lora],
dim=cross_q_lora.rank() - 1)
cross_qkv = cross_qkv + cross_qkv_lora
return cross_qkv
if self.skip_cross_qkv:
conditional = Conditional(cross_kv_cache_gen)
cond_in1 = conditional.add_input(encoder_output)
cond_in2 = conditional.add_input(cross_qkv_reuse)
## True branch: context phase, compute cross qkv
cross_qkv_true = compute_cross_qkv(cond_in1)
## False branch: generation phase, no compute but need to obey shape constraints
# because TRT's IfConditional requires the output shape of two subgraphs to be identical
# our 1st attempt was to stack encoder_output [B, S, H] or [N, H] --> cross qkv [B, S, 3*H] or [N, 3*H],
# but it still introduces unnecessary concat. A better solution is to create a dummy torch tensor `cross_qkv_resue`
# with the correct shape and reuse it in every generation step
cross_qkv_false = cond_in2
cross_qkv = conditional.add_output(cross_qkv_true,
cross_qkv_false)
else:
cross_qkv = compute_cross_qkv(encoder_output)
if default_net().plugin_config.gpt_attention_plugin:
if self.cross_attention and (past_key_value is not None):
past_key_value = kv_cache_params.past_key_value[1]
assert self.attention_mask_type in [
AttentionMaskType.causal, AttentionMaskType.bidirectional,
AttentionMaskType.bidirectionalglm,
AttentionMaskType.blocksparse
], 'Plugin only support masked MHA.'
# KV cache scales.
if self.kv_cache_scaling_factor is not None:
kv_orig_quant_scale = constant(fp32_array(
[1.0])) / self.kv_cache_scaling_factor.value
kv_quant_orig_scale = self.kv_cache_scaling_factor.value
else:
kv_orig_quant_scale = None
kv_quant_orig_scale = None
# Attention output scales
assert (
not default_net().plugin_config.use_fp8_context_fmha
) or self.quant_mode.has_fp8_qdq(
), "FP8 Context FMHA must be used together with the fp8 quantization workflow."
attention_output_orig_quant_scale = self.attention_output_orig_quant_scale.value if self.attention_output_orig_quant_scale is not None else None
if self.position_embedding_type == PositionEmbeddingType.long_rope:
short = slice(
self.embed_positions_short_factors_for_attention_plugin.
value, concat([0, 0, 0]),
concat([
max(attention_params.sequence_length,
self.original_max_position_embeddings),
self.rotary_embedding_dim // 2, 2
]))
long = slice(
self.embed_positions_long_factors_for_attention_plugin.
value, concat([0, 0, 0]),
concat([
max(attention_params.sequence_length,
self.original_max_position_embeddings),
self.rotary_embedding_dim // 2, 2
]))
short = short.view((1, -1))
long = long.view((1, -1))
embed_positions = concat([short, long], dim=0)
select = where(
fmax(attention_params.sequence_length, dim=0) <=
self.original_max_position_embeddings, 0, 1)
rotary_cos_sin = slice(embed_positions,
concat([select, 0]),
sizes=concat([1, shape(long, 1)]))
short_factors = self.rope_scaling_short_factors.value
long_factors = self.rope_scaling_long_factors.value
scale_factors = concat([short_factors, long_factors], dim=0)
rope_scaling_factors = slice(scale_factors,
concat([select, 0]),
sizes=concat(
[1, shape(long_factors, 1)]))
rope_scaling_factors = rope_scaling_factors.view((-1, ))
else:
# Rotary cos/sin cache.
rotary_cos_sin = self.embed_positions_for_gpt_attention.value if self.position_embedding_type.is_rope(
) else None
rope_scaling_factors = None
if self.position_embedding_type == PositionEmbeddingType.long_rope:
short_mscale, long_mscale = self.short_mscale, self.long_mscale
else:
short_mscale, long_mscale = None, None
context, past_key_value = gpt_attention(
qkv=qkv,
past_key_value=past_key_value,
sequence_length=attention_params.sequence_length,
host_past_key_value_lengths=kv_cache_params.
host_past_key_value_lengths,
host_max_attention_window_sizes=kv_cache_params.
host_max_attention_window_sizes,
host_sink_token_length=kv_cache_params.host_sink_token_length,
context_lengths=attention_params.context_lengths,
cache_indirection=kv_cache_params.cache_indirection,
host_request_types=attention_params.host_request_types,
layer_idx=self.local_layer_idx,
num_heads=self.num_attention_heads,
num_kv_heads=self.num_attention_kv_heads,
hidden_size_per_head=self.attention_head_size,
q_scaling=self.q_scaling,
rotary_embedding_dim=self.rotary_embedding_dim,
rotary_embedding_base=self.rotary_embedding_base,
rotary_embedding_scale_type=self.rotary_embedding_scale_type,
rotary_embedding_scaling_factors=rope_scaling_factors,
rotary_embedding_short_m_scale=short_mscale,
rotary_embedding_long_m_scale=long_mscale,
rotary_embedding_scale=self.rotary_embedding_scale,
rotary_embedding_max_positions=self.max_position_embeddings,
rotary_embedding_original_max_positions=self.
original_max_position_embeddings,
position_embedding_type=self.position_embedding_type,
rotary_cos_sin=rotary_cos_sin,
kv_orig_quant_scale=kv_orig_quant_scale,
kv_quant_orig_scale=kv_quant_orig_scale,
attention_output_orig_quant_scale=
attention_output_orig_quant_scale,
kv_cache_quant_mode=self.quant_mode,
max_context_length=attention_params.max_context_length,
mask_type=self.attention_mask_type,
block_sparse_block_size=self.block_sparse_params.block_size,
block_sparse_homo_head_pattern=self.block_sparse_params.
homo_head_pattern,
block_sparse_num_local_blocks=self.block_sparse_params.
num_local_blocks,
block_sparse_vertical_stride=self.block_sparse_params.
vertical_stride,
alibi_slopes=alibi_slopes,
tp_size=self.tp_size,
tp_rank=self.tp_rank,
kv_cache_block_offsets=kv_cache_params.kv_cache_block_offsets
if not self.cross_attention else
kv_cache_params.cross_kv_cache_block_offsets,
host_kv_cache_block_offsets=kv_cache_params.
host_kv_cache_block_offsets if not self.cross_attention else
kv_cache_params.host_cross_kv_cache_block_offsets,
host_kv_cache_pool_pointers=kv_cache_params.
host_kv_cache_pool_pointers if not self.cross_attention else
kv_cache_params.host_cross_kv_cache_pool_pointers,
do_cross_attention=self.cross_attention,
cross_qkv=cross_qkv,
cross_qkv_length=attention_params.encoder_max_input_length,
encoder_input_lengths=attention_params.encoder_input_lengths,
relative_attention_bias=self.rel_attn_table.value
if self.relative_attention else None,
max_distance=self.max_distance,
host_context_lengths=attention_params.host_context_lengths,
use_cache=use_cache,
spec_decoding_generation_lengths=spec_decoding_params.
spec_decoding_generation_lengths,
spec_decoding_position_offsets=spec_decoding_params.
spec_decoding_position_offsets,
spec_decoding_packed_mask=spec_decoding_params.
spec_decoding_packed_mask,
qk_tanh_scale=self.max_attn_value)
else:
# plain TensorRT mode
assert paged_kv_cache == False
def transpose_for_scores(x,
rotary: bool = False,
is_kv: bool = False):
_num_attention_heads = self.num_attention_kv_heads if is_kv else self.num_attention_heads
new_x_shape = concat([
shape(x, 0),
shape(x, 1), _num_attention_heads, self.attention_head_size
])
if rotary:
return x.view(new_x_shape)
else:
return x.view(new_x_shape).permute([0, 2, 1, 3])
# qkv after projection is of shape
# [bs, seqlen, (num_attention_heads + 2 * num_attention_kv_heads), attention_head_size].
# The projected and split qkv after transpose_for_scores():
# Q[bs, num_attention_heads, seqlen, attention_head_size]
# K[bs, num_attention_kv_heads, seqlen, attention_head_size]
# V[bs, num_attention_kv_heads, seqlen, attention_head_size]
kv_size = self.attention_head_size * self.num_attention_kv_heads
if unfuse_qkv_gemm:
query, key, value = qkv[0], qkv[1], qkv[2]
else:
query, key, value = split(
qkv, [self.attention_hidden_size, kv_size, kv_size], dim=2)
# in cross attention mode, replace kv by encoder_output
if self.cross_attention and encoder_output is not None:
encoder_qkv = self.qkv(encoder_output)
_, key, value = split(
encoder_qkv, [self.attention_hidden_size, kv_size, kv_size],
dim=2)
query = transpose_for_scores(
query, rotary=self.position_embedding_type.is_rope())
key = transpose_for_scores(
key, is_kv=True, rotary=self.position_embedding_type.is_rope())
value = transpose_for_scores(value, is_kv=True)
if self.position_embedding_type.is_rope():
if self.position_embedding_type == PositionEmbeddingType.long_rope:
sequence_length = shape(hidden_states, 1)
short = slice(
self.embed_positions_short_factors.value,
concat([0, 0, 0]),
concat([
1,
max(sequence_length,
self.original_max_position_embeddings),
self.rotary_embedding_dim
]))
long = slice(
self.embed_positions_long_factors.value,
concat([0, 0, 0]),
concat([
1,
max(sequence_length,
self.original_max_position_embeddings),
self.rotary_embedding_dim
]))
embed_positions = concat([short, long], dim=0)
select = where(
sequence_length <=
self.original_max_position_embeddings, 0, 1)
embed_positions = slice(embed_positions,
concat([select, 0, 0]),
sizes=shape(short))
embed_positions = cast(embed_positions, self.dtype)
elif is_same_dtype(self.dtype, trt.bfloat16):
embed_positions = cast(self.embed_positions.value,
trt.bfloat16)
else:
embed_positions = cast(self.embed_positions.value,
query.dtype)
if self.rotary_embedding_dim is not None:
# When shape(hidden_states, 1) > 1(Context phase), the embedding start from 0,
# otherwise (Generation phase) move start to position
start = where(
shape(hidden_states, 1) > 1, 0,
shape(past_key_value, 3))
size = where(
shape(hidden_states, 1) > 1, shape(hidden_states, 1), 1)
sincos = slice(embed_positions, concat([0, start, 0]),
concat([1, size, self.rotary_embedding_dim]))
sin, cos = split(sincos,
self.rotary_embedding_dim // 2,
dim=-1)
key_rot_size = concat([
shape(key, 0),
shape(key, 1),
shape(key, 2), self.rotary_embedding_dim
])
query_rot_size = concat([
shape(query, 0),
shape(query, 1),
shape(query, 2), self.rotary_embedding_dim
])
remaining = shape(key, 3) - self.rotary_embedding_dim
key_pass_size = concat([
shape(key, 0),
shape(key, 1),
shape(key, 2), remaining
])
query_pass_size = concat([
shape(query, 0),
shape(query, 1),
shape(query, 2), remaining
])
k_rot = slice(key, [0, 0, 0, 0], key_rot_size)
k_pass = slice(key, [0, 0, 0, self.rotary_embedding_dim],
key_pass_size)
q_rot = slice(query, [0, 0, 0, 0], query_rot_size)
q_pass = slice(query, [0, 0, 0, self.rotary_embedding_dim],
query_pass_size)
k_rot = RopeEmbeddingUtils.apply_rotary_pos_emb(
k_rot, [cos, sin], self.position_embedding_type)
q_rot = RopeEmbeddingUtils.apply_rotary_pos_emb(
q_rot, [cos, sin], self.position_embedding_type)
key = concat([k_rot, k_pass], dim=3)
query = concat([q_rot, q_pass], dim=3)
else:
key = RopeEmbeddingUtils.apply_rotary_pos_emb(
key, [cos, sin], self.position_embedding_type)
query = RopeEmbeddingUtils.apply_rotary_pos_emb(
query, [cos, sin], self.position_embedding_type)
key = key.permute([0, 2, 1, 3])
query = query.permute([0, 2, 1, 3])
if past_key_value is not None and not self.cross_attention:
if self.kv_cache_scaling_factor is not None:
past_key_value = dequantize(
past_key_value, self.kv_cache_scaling_factor.value)
# past_key_value [bs, 2, num_heads, max_seq_len, head_dim]
past_key, past_value = split(past_key_value, 1, dim=1)
key_shape = concat([
shape(past_key, 0),
shape(past_key, 2),
shape(past_key, 3),
shape(past_key, 4)
])
past_key = past_key.view(key_shape, zero_is_placeholder=False)
past_value = past_value.view(key_shape,
zero_is_placeholder=False)
key = concat([past_key, key], dim=2)
value = concat([past_value, value], dim=2)
if use_cache:
key_inflated_shape = concat([
shape(key, 0), 1,
shape(key, 1),