Skip to content

TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.

License

Notifications You must be signed in to change notification settings

NVIDIA/TensorRT-LLM

Repository files navigation

TensorRT-LLM

A TensorRT Toolbox for Optimized Large Language Model Inference

Documentation python cuda trt version license

Architecture   |   Results   |   Examples   |   Documentation   |   Roadmap


Latest News

  • [2024/11/09] 🚀🚀🚀 3x Faster AllReduce with NVSwitch and TensorRT-LLM MultiShot ➡️ link
  • [2024/11/09] ✨ NVIDIA advances the AI ecosystem with the AI model of LG AI Research 🙌 ➡️ link

  • [2024/11/02] 🌟🌟🌟 NVIDIA and LlamaIndex Developer Contest 🙌 Enter for a chance to win prizes including an NVIDIA® GeForce RTX™ 4080 SUPER GPU, DLI credits, and more🙌 ➡️ link

  • [2024/10/28] 🏎️🏎️🏎️ NVIDIA GH200 Superchip Accelerates Inference by 2x in Multiturn Interactions with Llama Models ➡️ link

  • [2024/10/22] New 📝 Step-by-step instructions on how to ✅ Optimize LLMs with NVIDIA TensorRT-LLM, ✅ Deploy the optimized models with Triton Inference Server, ✅ Autoscale LLMs deployment in a Kubernetes environment. 🙌 Technical Deep Dive: ➡️ link

  • [2024/10/07] 🚀🚀🚀Optimizing Microsoft Bing Visual Search with NVIDIA Accelerated Libraries ➡️ link

  • [2024/09/29] 🌟 AI at Meta PyTorch + TensorRT v2.4 🌟 ⚡TensorRT 10.1 ⚡PyTorch 2.4 ⚡CUDA 12.4 ⚡Python 3.12 ➡️ link

  • [2024/09/17] ✨ NVIDIA TensorRT-LLM Meetup ➡️ link

  • [2024/09/17] ✨ Accelerating LLM Inference at Databricks with TensorRT-LLM ➡️ link

  • [2024/09/17] ✨ TensorRT-LLM @ Baseten ➡️ link

  • [2024/09/04] 🏎️🏎️🏎️ Best Practices for Tuning TensorRT-LLM for Optimal Serving with BentoML ➡️ link

Previous News

TensorRT-LLM Overview

TensorRT-LLM is a library for optimizing Large Language Model (LLM) inference. It provides state-of-the-art optimizations, including custom attention kernels, inflight batching, paged KV caching, quantization (FP8, INT4 AWQ, INT8 SmoothQuant, ++) and much more, to perform inference efficiently on NVIDIA GPUs

TensorRT-LLM provides a Python API to build LLMs into optimized TensorRT engines. It contains runtimes in Python (bindings) and C++ to execute those TensorRT engines. It also includes a backend for integration with the NVIDIA Triton Inference Server. Models built with TensorRT-LLM can be executed on a wide range of configurations from a single GPU to multiple nodes with multiple GPUs (using Tensor Parallelism and/or Pipeline Parallelism).

TensorRT-LLM comes with several popular models pre-defined. They can easily be modified and extended to fit custom needs via a PyTorch-like Python API. Refer to the Support Matrix for a list of supported models.

TensorRT-LLM is built on top of the TensorRT Deep Learning Inference library. It leverages much of TensorRT's deep learning optimizations and adds LLM-specific optimizations on top, as described above. TensorRT is an ahead-of-time compiler; it builds "Engines" which are optimized representations of the compiled model containing the entire execution graph. These engines are optimized for a specific GPU architecture, and can be validated, benchmarked, and serialized for later deployment in a production environment.

Getting Started

To get started with TensorRT-LLM, visit our documentation:

Community

  • Model zoo (generated by TRT-LLM rel 0.9 a9356d4b7610330e89c1010f342a9ac644215c52)

About

TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs. TensorRT-LLM also contains components to create Python and C++ runtimes that execute those TensorRT engines.

Resources

License

Stars

Watchers

Forks

Packages

No packages published