Skip to content

jameseh96/pdu

Repository files navigation

pypdu | pdu | pdump

This repo contains two small C++ tools, pdu and pdump. These tools operate on Prometheus on-disk data, and provide insight into per-metric family disk usage and raw sample data respectively.

In addition, pypdu provides Python bindings supporting basic operations on Prometheus data including iterating all time series, and all samples therein.

Note: This has not been thoroughly tested across Prometheus versions; no compatibility guarantees are made.

pypdu

Python module capable of reading the time series data written to disk by Prometheus.

Quick Start

Install from PyPI with pip:

$ pip install pypdu

NOTE: Outdated pip versions may try to build from source even though a suitable package has been published. If pip downloads a tar.gz and you encounter compilation issues, ensure you have a up-to-date pip.

Wheels are currently only built and published for MacOS and Linux.

Unsupported platforms/architectures may still be able to use pypdu even though a wheel has not been published. Installing via pip will download the source and attempt to build it; ensure you have the Prerequisites.

Basic usage example:

#!/usr/bin/env python3
import pypdu

data = pypdu.load("/path/to/stats_data")

for series in data:
    print(series.labels)
    print(len(series.samples))
    for sample in series.samples:
        print(f"{sample.timestamp} : {sample.value}")

For further details on pypdu features and alternative installation methods, see pypdu.


pdu

A small tool to break down the disk usage of Prometheus chunk files by metric family.

Getting Started

The Prometheus data directory probably looks a little like:

$ tree stats_data
stats_data
├── 01F5G2GWY1KV51STTKY40V2YB3
│   ├── chunks
│   │   └── 000001
│   ├── index
│   ├── meta.json
│   └── tombstones
├── 01F5GAK90QQ70NFKD1FM5CJNQM
│   ├── chunks
│   │   └── 000001
│   ├── index
│   ├── meta.json
│   └── tombstones
├── chunks_head
│   ├── 000003
│   └── 000004
├── queries.active
└── wal
    ├── 00000008
    ├── 00000009
    ├── 00000010
    ├── 00000011
    └── checkpoint.00000007
        └── 00000000

With a directory like that, pdu can be launched with:

$ pdu stats_data
12065592 kv_cmd_duration_seconds_bucket
542258   kv_cmd_duration_seconds_sum
436696   kv_cmd_duration_seconds_count
431900   kv_disk_seconds_bucket
259140   kv_sync_write_commit_duration_seconds_bucket
231249   kv_checkpoint_remover_seconds_bucket
214276   scrape_duration_seconds
172918   kv_cursor_get_all_items_time_seconds_bucket
123301   sysproc_page_faults_raw
123147   sysproc_minor_faults_raw
89701    kv_expiry_pager_seconds_bucket
86380    kv_storage_age_seconds_bucket
86380    kv_pending_ops_seconds_bucket
86380    kv_notify_io_seconds_bucket
86380    kv_item_pager_seconds_bucket
86380    kv_bg_wait_seconds_bucket
86380    kv_bg_load_seconds_bucket
72311    sysproc_mem_resident
66095    exposer_request_latencies
...

Where each line gives:

<bytes used> <metric family>

It may be convenient to sort this output, e.g., with

$ pdu --sort=size stats_data

To display only specific metric families, a filter regex can be used

$ pdu --filter=".*foobar.*" stats_data

This is applied to the metric family name only, and will not match labels.

The encoding of timestamps and values on disk is variable width; to produce a distribution of the bits used per sample:

$ pdu --bitwidth -hp stats_data
total
  Timestamps
  total size: 127 MB
     1b:   16893137   71.02% count,   12.64% size
    16b:    6690807   28.13% count,   80.09% size
    20b:        322    0.00% count,    0.00% size
    24b:       1778    0.01% count,    0.03% size
    48b:     201204    0.85% count,    7.23% size
    68b:        112    0.00% count,    0.01% size
  Values
  total size: 83 MB
     1b:   20926453   87.97% count,   23.93% size
     3b:        533    0.00% count,    0.00% size
     4b:       7521    0.03% count,    0.03% size
     5b:      16161    0.07% count,    0.09% size
     6b:      34733    0.15% count,    0.24% size
     7b:      55783    0.23% count,    0.45% size
     ...

Options

  -d [ --dir ] arg      Prometheus stats directory
  -c [ --total ]        Print total
  -s [ --summary ]      Print only summary
  -h [ --human ]        Use "human-readable" units
  -p [ --percent ]      Display percentage of total usage
  -S [ --sort ] arg     Sort output, valid values: "default", "size"
  -r [ --reverse ]      Reverse sort order
  -b [ --bitwidth ]     Display timestamp/value encoding bit width
                        distributions
  -f [ --filter ] arg   Regex filter applied to metric family names

This only considers bytes within chunk files - space used by the index file itself is not included, and WALs are ignored.

Expect the output to be an underestimate!


pdump

pdump can be used to dump the raw time series data from a Prometheus data directory.

$ pdump stats_data
__name__ scrape_duration_seconds
instance kv
job general

1621268075527 0.00226225
1621268085527 0.00226225
1621268095527 0.00226225
1621268105527 0.00226225
1621268115527 0.00226225
...

This is structured as follows

labelKey labelValue
labelKey labelValue
labelKey labelValue

timestamp value
timestamp value
timestamp value
...

labelKey labelValue
...

Each section is separated by an empty line.

Alternative output formats and filtering options may be implemented in the future. However, with pypdu, arbitrary filtering and formatting can be done from Python instead.


Building From Source

Prerequisites

To build C++ tools you will need:

In addition, to build pypdu from source:

  • Python headers (typically provided by a pythonX.X-dev or pythonX.X-devel package)

Installing

git clone https://github.com/jameseh96/pdu.git pdu
cd ./pdu
git submodule update --init --recursive
mkdir ./build
cd !$
cmake -DCMAKE_BUILD_TYPE=RelWithDebInfo ..
make

Built With

About

Tools to explore Prometheus on-disk data.

Resources

License

Stars

Watchers

Forks

Packages

No packages published