Skip to content

jakic12/Text-LSTM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Math docs

All of the math i did is written here LSTM1.docx

Running the gui

run the file LstmGui/dist/LstmGui.jar

The library

MLP -> MultiLayeredPerceptron

Default settings object

double[] settings = {
    1, // activate weights with random value  0
    0, // minimum random weight activation    1
    1, // maximum random weight activation    2
    1, // activate biases with random value   3
    0, // minimum random bias activation      4
    1, // maximum random bias activation      5
    1, // activation function 1 = sigmoid     6
    1, // error function 1 = quadratic        7
    0.005, // learning rate                   8
    0, // softmax output                      9
    0, // output results to file output.json  10
    0, // Graph data                          11
    10, // graph every n epochs             12
};

Structures

neurons

An array the size of layer count, wich consists of neuron vectors

neurons[ layer ][ this_layer ]

synapses

An array the size of layer count -1. Here there are stored synapses matrices that connect from this layer, to the next one.

neurons[ layer ][ this_layer ][ next_layer ]

Example usage

create a network with 4 layers, sizes: 3,2,2,3

Mlp testMlp = new Mlp(new int[]{3,2,2,3});
disable random bias activation
testMlp.settings[3] = 0;
initialize the weights
testMlp.randomlySetWeights();
forwardPropagate an input ( output is stored in the last layer )
testMlp.forward(new double[]{1,0,1});
double[] out = testMlp.neurons[testMlp.neurons.length-1];
forwardPropagate an input ( output is returned from method )
double[] out = testMlp.eval(new double[]{1,0,1});
backpropagate ( forward propagation is required before )
double[] targetOutput = new double[]{1,1,0};
testMlp.backpropagate(targetOutput);
backpropagate ( forward propagation isn't required before )
double[] exampleInput = new double[]{1,0,1};
double[] targetOutput = new double[]{1,1,0};
testMlp.backpropagate(exampleInput,targetOutput);
learn a dataset

lets make it learn XOR
inputs outputs
[[0,0], -> [[0],
[0,1], -> [1],
[1,0], -> [1],
[1,1]] -> [0]]
1000 epochs, 100 iterations per training example

testMlp1.learn(new double[][]{{0,0}, {0,1}, {1,0}, {1,1}}, new double[][]{{0}, {1}, {1}, {0}}, 1000, 100);

Graph

This is a graphing library which is kinda bad.

Example usage

Create new graph object

you can create the Graph object empty or with data

Graph testGraph = new Graph();

or

Graph testGraph = new Graph(new double[]{5,5,4,4,4,3,3,3,3,2,2,2,2,2,1,1,1,1,1});
Show the graph
testGraph.showGraph("graph title");
Add data

You can add data and the graph will update
You can add data as a Point object:

testGraph.addData(new Point(19,10));

or as a value

testGraph.addData(10);

or as an array of any of the two

DataManager

DataManager is made, to convert from meaningfull data, to Lstm trainable data

Example usage

text

build a vocabulary
char[] vocabulary = DataManager.buildCharVocab("test sentence1. Test sentence2");
convert a sentence to lstm data
//TODO check if posible
convert multiple sentences to lstm data
String[] testData = new String[]{"test sentence1", "Test sentence2"};
char[][][] data = DataManager.stringToInCharExpChar(testData);
char[] vocabulary = DataManager.buildCharVocab("test sentence1. Test sentence2");

double[][][] testTestData = DataManager.vectorifyChar(vocabulary, data[0]);
double[][][] testExpData = DataManager.vectorifyChar(vocabulary, data[1]);
convert vectorized sentence to chars
char[] outChar = DataManager.vectorToChar(out, vocabulary);

LstmCell

This object is an abstract lstm cell with 4 gates

Example usage

Create new cell
int inputSize = 2;
int outputSize = 3;
LstmCell cell1 = new LstmCell(inputSize, outputSize);

LstmChain

Made for orchestraiting and training an lstmcell

Example usage

create new chain
LstmChain chain = new LstmChain(cell1);
Make the cell learn on some data on 10000 epochs and 100 iterations
// example data [0,0,1] -> [0,1,0]
//              [0,1,0] -> [1,0,0]
double[][] testTestData = new double[][]{{0,0,1},{0,1,0}};
double[][] testExpData = new double[][]{{0,1,0},{1,0,0}};

chain.learn(testTestData, testExpData, 10000, 100);
Generate 1000 sets of data, with the first data being [0,0,1]
double[][] out = chain.forwardWithVectorify([0,0,1], 1000);

About

Text generating LSTM

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages