-
Notifications
You must be signed in to change notification settings - Fork 37
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Decouple data type logging into separated methods. Use subfolders for each data type. Raise NotImplementedError in `log_plot` when using steps.
- Loading branch information
Showing
19 changed files
with
508 additions
and
123 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,12 @@ | ||
from .image import Image | ||
from .plot import Calibration, ConfusionMatrix, Det, PrecisionRecall, Roc | ||
from .scalar import Scalar | ||
|
||
DATA_TYPES = [Image, Scalar] | ||
PLOTS = { | ||
"calibration": Calibration, | ||
"confusion_matrix": ConfusionMatrix, | ||
"det": Det, | ||
"precision_recall": PrecisionRecall, | ||
"roc": Roc, | ||
} | ||
DATA_TYPES = list(PLOTS.values()) + [Scalar, Image] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,123 @@ | ||
import json | ||
from pathlib import Path | ||
|
||
from .base import Data | ||
|
||
|
||
class Plot(Data): | ||
suffixes = [".json"] | ||
subfolder = "plots" | ||
|
||
@property | ||
def output_path(self) -> Path: | ||
_path = self.output_folder / self.name | ||
_path.parent.mkdir(exist_ok=True, parents=True) | ||
return _path.with_suffix(".json") | ||
|
||
@staticmethod | ||
def could_log(val: object) -> bool: | ||
if isinstance(val, tuple) and len(val) == 2: | ||
return True | ||
return False | ||
|
||
@property | ||
def no_step_output_path(self) -> Path: | ||
return super().no_step_output_path.with_suffix(".json") | ||
|
||
@property | ||
def summary(self): | ||
return {} | ||
|
||
@staticmethod | ||
def write_json(content, output_file): | ||
with open(output_file, "w") as f: | ||
json.dump(content, f, indent=4) | ||
|
||
def no_step_dump(self) -> None: | ||
raise NotImplementedError | ||
|
||
def first_step_dump(self) -> None: | ||
raise NotImplementedError( | ||
"DVCLive plots can only be used in no-step mode." | ||
) | ||
|
||
def step_dump(self) -> None: | ||
raise NotImplementedError( | ||
"DVCLive plots can only be used in no-step mode." | ||
) | ||
|
||
|
||
class Roc(Plot): | ||
def no_step_dump(self) -> int: | ||
from sklearn import metrics | ||
|
||
fpr, tpr, roc_thresholds = metrics.roc_curve( | ||
y_true=self.val[0], y_score=self.val[1], **self._dump_kwargs | ||
) | ||
roc = { | ||
"roc": [ | ||
{"fpr": fp, "tpr": tp, "threshold": t} | ||
for fp, tp, t in zip(fpr, tpr, roc_thresholds) | ||
] | ||
} | ||
self.write_json(roc, self.output_path) | ||
|
||
|
||
class PrecisionRecall(Plot): | ||
def no_step_dump(self) -> int: | ||
from sklearn import metrics | ||
|
||
precision, recall, prc_thresholds = metrics.precision_recall_curve( | ||
y_true=self.val[0], probas_pred=self.val[1], **self._dump_kwargs | ||
) | ||
|
||
prc = { | ||
"prc": [ | ||
{"precision": p, "recall": r, "threshold": t} | ||
for p, r, t in zip(precision, recall, prc_thresholds) | ||
] | ||
} | ||
self.write_json(prc, self.output_path) | ||
|
||
|
||
class Det(Plot): | ||
def no_step_dump(self) -> int: | ||
from sklearn import metrics | ||
|
||
fpr, fnr, roc_thresholds = metrics.det_curve( | ||
y_true=self.val[0], y_score=self.val[1], **self._dump_kwargs | ||
) | ||
|
||
det = { | ||
"det": [ | ||
{"fpr": fp, "fnr": fn, "threshold": t} | ||
for fp, fn, t in zip(fpr, fnr, roc_thresholds) | ||
] | ||
} | ||
self.write_json(det, self.output_path) | ||
|
||
|
||
class ConfusionMatrix(Plot): | ||
def no_step_dump(self) -> int: | ||
cm = [ | ||
{"actual": str(actual), "predicted": str(predicted)} | ||
for actual, predicted in zip(self.val[0], self.val[1]) | ||
] | ||
self.write_json(cm, self.output_path) | ||
|
||
|
||
class Calibration(Plot): | ||
def no_step_dump(self) -> int: | ||
from sklearn import calibration | ||
|
||
prob_true, prob_pred = calibration.calibration_curve( | ||
y_true=self.val[0], y_prob=self.val[1], **self._dump_kwargs | ||
) | ||
|
||
calibration = { | ||
"calibration": [ | ||
{"prob_true": pt, "prob_pred": pp} | ||
for pt, pp in zip(prob_true, prob_pred) | ||
] | ||
} | ||
self.write_json(calibration, self.output_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.