Skip to content

Commit

Permalink
update readme after namechange
Browse files Browse the repository at this point in the history
  • Loading branch information
awanafiaz committed Sep 30, 2024
1 parent ca3064c commit ee4b5bc
Show file tree
Hide file tree
Showing 2 changed files with 30 additions and 30 deletions.
6 changes: 3 additions & 3 deletions README.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -28,9 +28,9 @@ knitr::opts_chunk$set(collapse = TRUE, comment = "#>",

Using predictions from pre-trained algorithms as outcomes in downstream statistical analyses can lead to biased estimates and misleading conclusions. The statistical challenges encountered when drawing inference on predicted data (IPD) include:

1. Understanding the relationship between predicted outcomes and their true, unobserved counterparts
2. Quantifying the robustness of the AI/ML models to resampling or uncertainty about the training data
3. Appropriately propagating both bias and uncertainty from predictions into downstream inferential tasks
1. Understanding the relationship between predicted outcomes and their true, unobserved counterparts.
2. Quantifying the robustness of the AI/ML models to resampling or uncertainty about the training data.
3. Appropriately propagating both bias and uncertainty from predictions into downstream inferential tasks.

Several works have proposed methods for IPD, including post-prediction inference (PostPI) by [Wang et al., 2020](https://www.pnas.org/doi/suppl/10.1073/pnas.2001238117), prediction-powered inference (PPI) and PPI++ by [Angelopoulos et al., 2023a](https://www.science.org/doi/10.1126/science.adi6000) and [Angelopoulos et al., 2023b](https://arxiv.org/abs/2311.01453), and post-prediction adaptive inference (PSPA) by [Miao et al., 2023](https://arxiv.org/abs/2311.14220). Each method was developed to perform inference on a quantity such as the outcome mean or quantile, or a regression coefficient, when we have:

Expand Down
54 changes: 27 additions & 27 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@

<!-- badges: start -->

[![R-CMD-check](https://github.com/awanafiaz/IPD/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/awanafiaz/IPD/actions/workflows/R-CMD-check.yaml)
[![R-CMD-check](https://github.com/awanafiaz/ipd/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/awanafiaz/ipd/actions/workflows/R-CMD-check.yaml)

<!-- badges: end -->

Expand All @@ -30,11 +30,11 @@ conclusions. The statistical challenges encountered when drawing
inference on predicted data (IPD) include:

1. Understanding the relationship between predicted outcomes and their
true, unobserved counterparts
true, unobserved counterparts.
2. Quantifying the robustness of the AI/ML models to resampling or
uncertainty about the training data
uncertainty about the training data.
3. Appropriately propagating both bias and uncertainty from predictions
into downstream inferential tasks
into downstream inferential tasks.

Several works have proposed methods for IPD, including post-prediction
inference (PostPI) by [Wang et al.,
Expand Down Expand Up @@ -75,17 +75,17 @@ package.
## Installation

To install the development version of `ipd` from
[GitHub](https://github.com/awanafiaz/IPD), you can use the `devtools`
[GitHub](https://github.com/awanafiaz/ipd), you can use the `devtools`
package:

``` r
#-- Install devtools if it is not already installed

install.packages("devtools")

#-- Install the IPD package from GitHub
#-- Install the ipd package from GitHub

devtools::install_github("awanafiaz/IPD")
devtools::install_github("awanafiaz/ipd")
```

## Usage
Expand All @@ -106,9 +106,9 @@ observations used to fit a prediction model, and “labeled” and
the simulated features of interest.

``` r
#-- Load the IPD Library
#-- Load the ipd Library

library(IPD)
library(ipd)

#-- Generate Example Data for Linear Regression

Expand Down Expand Up @@ -252,7 +252,7 @@ formula <- Y - f ~ X1

nboot <- 200

IPD::ipd(formula,
ipd::ipd(formula,

method = "postpi_boot", model = "ols", data = dat, label = "set",

Expand All @@ -278,7 +278,7 @@ IPD::ipd(formula,
``` r
#-- Fit the PostPI Analytic Correction

IPD::ipd(formula,
ipd::ipd(formula,

method = "postpi_analytic", model = "ols", data = dat, label = "set") |>

Expand All @@ -302,7 +302,7 @@ IPD::ipd(formula,
``` r
#-- Fit the PPI Correction

IPD::ipd(formula,
ipd::ipd(formula,

method = "ppi", model = "ols", data = dat, label = "set") |>

Expand All @@ -326,7 +326,7 @@ IPD::ipd(formula,
``` r
#-- Fit the PPI++ Correction

IPD::ipd(formula,
ipd::ipd(formula,

method = "ppi_plusplus", model = "ols", data = dat, label = "set") |>

Expand All @@ -350,7 +350,7 @@ IPD::ipd(formula,
``` r
#-- Fit the PSPA Correction

IPD::ipd(formula,
ipd::ipd(formula,

method = "pspa", model = "ols", data = dat, label = "set") |>

Expand Down Expand Up @@ -379,7 +379,7 @@ and `augment` methods to facilitate easy model inspection:

nboot <- 200

fit_postpi <- IPD::ipd(formula,
fit_postpi <- ipd::ipd(formula,

method = "postpi_boot", model = "ols", data = dat, label = "set",

Expand Down Expand Up @@ -460,20 +460,20 @@ developers at [[email protected]]([email protected]).
## Contributing

Contributions are welcome! Please open an issue or submit a pull request
on [GitHub](https://github.com/awanafiaz/IPD). The following
on [GitHub](https://github.com/awanafiaz/ipd). The following
method/model combinations are currently implemented:

| Method | Mean Estimation | Quantile Estimation | Linear Regression | Logistic Regression | Poisson Regression | Multiclass Regression |
|-----------------------------------------------------------------|--------------------|---------------------|--------------------|---------------------|--------------------|-----------------------|
| [PostPI](https://www.pnas.org/doi/full/10.1073/pnas.2001238117) | :x: | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: |
| [PPI](https://www.science.org/doi/10.1126/science.adi6000) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: |
| [PPI++](https://arxiv.org/abs/2311.01453) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: |
| [PSPA](https://arxiv.org/abs/2311.14220) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: |
| [PSPS](https://arxiv.org/abs/2405.20039) | :x: | :x: | :x: | :x: | :x: | :x: |
| [PDC](https://arxiv.org/abs/2312.06478) | :x: | :x: | :x: | :x: | :x: | :x: |
| [Cross-PPI](https://www.pnas.org/doi/10.1073/pnas.2322083121) | :x: | :x: | :x: | :x: | :x: | :x: |
| [PPBoot](https://arxiv.org/abs/2405.18379) | :x: | :x: | :x: | :x: | :x: | :x: |
| [DSL](https://arxiv.org/abs/2306.04746) | :x: | :x: | :x: | :x: | :x: | :x: |
| Method | Mean Estimation | Quantile Estimation | Linear Regression | Logistic Regression | Poisson Regression | Multiclass Regression |
|----|----|----|----|----|----|----|
| [PostPI](https://www.pnas.org/doi/full/10.1073/pnas.2001238117) | :x: | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: |
| [PPI](https://www.science.org/doi/10.1126/science.adi6000) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: |
| [PPI++](https://arxiv.org/abs/2311.01453) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: |
| [PSPA](https://arxiv.org/abs/2311.14220) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: |
| [PSPS](https://arxiv.org/abs/2405.20039) | :x: | :x: | :x: | :x: | :x: | :x: |
| [PDC](https://arxiv.org/abs/2312.06478) | :x: | :x: | :x: | :x: | :x: | :x: |
| [Cross-PPI](https://www.pnas.org/doi/10.1073/pnas.2322083121) | :x: | :x: | :x: | :x: | :x: | :x: |
| [PPBoot](https://arxiv.org/abs/2405.18379) | :x: | :x: | :x: | :x: | :x: | :x: |
| [DSL](https://arxiv.org/abs/2306.04746) | :x: | :x: | :x: | :x: | :x: | :x: |

## License

Expand Down

0 comments on commit ee4b5bc

Please sign in to comment.