-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
30 additions
and
30 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,7 +5,7 @@ | |
|
||
<!-- badges: start --> | ||
|
||
[![R-CMD-check](https://github.com/awanafiaz/IPD/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/awanafiaz/IPD/actions/workflows/R-CMD-check.yaml) | ||
[![R-CMD-check](https://github.com/awanafiaz/ipd/actions/workflows/R-CMD-check.yaml/badge.svg)](https://github.com/awanafiaz/ipd/actions/workflows/R-CMD-check.yaml) | ||
|
||
<!-- badges: end --> | ||
|
||
|
@@ -30,11 +30,11 @@ conclusions. The statistical challenges encountered when drawing | |
inference on predicted data (IPD) include: | ||
|
||
1. Understanding the relationship between predicted outcomes and their | ||
true, unobserved counterparts | ||
true, unobserved counterparts. | ||
2. Quantifying the robustness of the AI/ML models to resampling or | ||
uncertainty about the training data | ||
uncertainty about the training data. | ||
3. Appropriately propagating both bias and uncertainty from predictions | ||
into downstream inferential tasks | ||
into downstream inferential tasks. | ||
|
||
Several works have proposed methods for IPD, including post-prediction | ||
inference (PostPI) by [Wang et al., | ||
|
@@ -75,17 +75,17 @@ package. | |
## Installation | ||
|
||
To install the development version of `ipd` from | ||
[GitHub](https://github.com/awanafiaz/IPD), you can use the `devtools` | ||
[GitHub](https://github.com/awanafiaz/ipd), you can use the `devtools` | ||
package: | ||
|
||
``` r | ||
#-- Install devtools if it is not already installed | ||
|
||
install.packages("devtools") | ||
|
||
#-- Install the IPD package from GitHub | ||
#-- Install the ipd package from GitHub | ||
|
||
devtools::install_github("awanafiaz/IPD") | ||
devtools::install_github("awanafiaz/ipd") | ||
``` | ||
|
||
## Usage | ||
|
@@ -106,9 +106,9 @@ observations used to fit a prediction model, and “labeled” and | |
the simulated features of interest. | ||
|
||
``` r | ||
#-- Load the IPD Library | ||
#-- Load the ipd Library | ||
|
||
library(IPD) | ||
library(ipd) | ||
|
||
#-- Generate Example Data for Linear Regression | ||
|
||
|
@@ -252,7 +252,7 @@ formula <- Y - f ~ X1 | |
|
||
nboot <- 200 | ||
|
||
IPD::ipd(formula, | ||
ipd::ipd(formula, | ||
|
||
method = "postpi_boot", model = "ols", data = dat, label = "set", | ||
|
||
|
@@ -278,7 +278,7 @@ IPD::ipd(formula, | |
``` r | ||
#-- Fit the PostPI Analytic Correction | ||
|
||
IPD::ipd(formula, | ||
ipd::ipd(formula, | ||
|
||
method = "postpi_analytic", model = "ols", data = dat, label = "set") |> | ||
|
||
|
@@ -302,7 +302,7 @@ IPD::ipd(formula, | |
``` r | ||
#-- Fit the PPI Correction | ||
|
||
IPD::ipd(formula, | ||
ipd::ipd(formula, | ||
|
||
method = "ppi", model = "ols", data = dat, label = "set") |> | ||
|
||
|
@@ -326,7 +326,7 @@ IPD::ipd(formula, | |
``` r | ||
#-- Fit the PPI++ Correction | ||
|
||
IPD::ipd(formula, | ||
ipd::ipd(formula, | ||
|
||
method = "ppi_plusplus", model = "ols", data = dat, label = "set") |> | ||
|
||
|
@@ -350,7 +350,7 @@ IPD::ipd(formula, | |
``` r | ||
#-- Fit the PSPA Correction | ||
|
||
IPD::ipd(formula, | ||
ipd::ipd(formula, | ||
|
||
method = "pspa", model = "ols", data = dat, label = "set") |> | ||
|
||
|
@@ -379,7 +379,7 @@ and `augment` methods to facilitate easy model inspection: | |
|
||
nboot <- 200 | ||
|
||
fit_postpi <- IPD::ipd(formula, | ||
fit_postpi <- ipd::ipd(formula, | ||
|
||
method = "postpi_boot", model = "ols", data = dat, label = "set", | ||
|
||
|
@@ -460,20 +460,20 @@ developers at [[email protected]]([email protected]). | |
## Contributing | ||
|
||
Contributions are welcome! Please open an issue or submit a pull request | ||
on [GitHub](https://github.com/awanafiaz/IPD). The following | ||
on [GitHub](https://github.com/awanafiaz/ipd). The following | ||
method/model combinations are currently implemented: | ||
|
||
| Method | Mean Estimation | Quantile Estimation | Linear Regression | Logistic Regression | Poisson Regression | Multiclass Regression | | ||
|-----------------------------------------------------------------|--------------------|---------------------|--------------------|---------------------|--------------------|-----------------------| | ||
| [PostPI](https://www.pnas.org/doi/full/10.1073/pnas.2001238117) | :x: | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: | | ||
| [PPI](https://www.science.org/doi/10.1126/science.adi6000) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | | ||
| [PPI++](https://arxiv.org/abs/2311.01453) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | | ||
| [PSPA](https://arxiv.org/abs/2311.14220) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | | ||
| [PSPS](https://arxiv.org/abs/2405.20039) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
| [PDC](https://arxiv.org/abs/2312.06478) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
| [Cross-PPI](https://www.pnas.org/doi/10.1073/pnas.2322083121) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
| [PPBoot](https://arxiv.org/abs/2405.18379) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
| [DSL](https://arxiv.org/abs/2306.04746) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
| Method | Mean Estimation | Quantile Estimation | Linear Regression | Logistic Regression | Poisson Regression | Multiclass Regression | | ||
|----|----|----|----|----|----|----| | ||
| [PostPI](https://www.pnas.org/doi/full/10.1073/pnas.2001238117) | :x: | :x: | :white_check_mark: | :white_check_mark: | :x: | :x: | | ||
| [PPI](https://www.science.org/doi/10.1126/science.adi6000) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | | ||
| [PPI++](https://arxiv.org/abs/2311.01453) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | :x: | | ||
| [PSPA](https://arxiv.org/abs/2311.14220) | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :white_check_mark: | :x: | | ||
| [PSPS](https://arxiv.org/abs/2405.20039) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
| [PDC](https://arxiv.org/abs/2312.06478) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
| [Cross-PPI](https://www.pnas.org/doi/10.1073/pnas.2322083121) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
| [PPBoot](https://arxiv.org/abs/2405.18379) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
| [DSL](https://arxiv.org/abs/2306.04746) | :x: | :x: | :x: | :x: | :x: | :x: | | ||
|
||
## License | ||
|
||
|