Skip to content

Commit

Permalink
fix tests with compat to ContinuumArrays >=v0.18.3
Browse files Browse the repository at this point in the history
  • Loading branch information
ioannisPApapadopoulos committed Aug 1, 2024
1 parent 092f1f3 commit 27be688
Show file tree
Hide file tree
Showing 3 changed files with 3 additions and 3 deletions.
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# RadialPiecewisePolynomials.jl

[![CI](https://github.com/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl/actions/workflows/ci.yml)
[![codecov.io](http://codecov.io/github/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl/coverage.svg?branch=main)](http://codecov.io/github/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl?branch=main)
[![codecov.io](http://codecov.io/gh/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl/branch/main/graph/badge.svg)](http://codecov.io/github/ioannisPApapadopoulos/RadialPiecewisePolynomials.jl?branch=main)

A Julia package for a hierarchical hp-finite element basis on disk and annuli. The mesh is an innermost disk (omitted if the domain is an annulus) and concentric annuli. The basis consists of Zernike (annular) polynomials modified into hat (external shape) and bubble (internal shape) functions.

Expand Down
2 changes: 1 addition & 1 deletion test/test_continuouszernike.jl
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
using Test, RadialPiecewisePolynomials, Memoization
import RadialPiecewisePolynomials: _getγs

c1 = -10; c2 = 0; c3=0.6
function f0_(x, y)
ρ = 0.2
c1,c3 = -10, 0.6
exp(c1*(x^2 + (y-c3)^2)) * (1-(x^2+y^2)) * ((x^2+y^2)-ρ^2)
end
function f0(xy)
Expand Down
2 changes: 1 addition & 1 deletion test/test_zernikebasis.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,9 +8,9 @@ f6(xy) = exp(-first(xy)^2-last(xy)^2) * sqrt(first(xy)^2+last(xy)^2)^6*cos(6*ata
f1c(xy) = exp(-first(xy)^2-last(xy)^2) * sqrt(first(xy)^2+last(xy)^2)*cos(atan(last(xy), first(xy)))
f1s(xy) = exp(-first(xy)^2-last(xy)^2) * sqrt(first(xy)^2+last(xy)^2)*sin(atan(last(xy), first(xy)))

c1 = -10; c2 = 0; c3=0.6
function u0_(x, y)
ρ = 0.2
c1, c3 = -10, 0.6
exp(c1*(x^2 + (y-c3)^2)) * (1-(x^2+y^2)) * ((x^2+y^2)-ρ^2)
end
function u0(xy)
Expand Down

0 comments on commit 27be688

Please sign in to comment.