-
Notifications
You must be signed in to change notification settings - Fork 16
Use Cases
IntelliNode enables easy integration of cutting-edge AI models into your projects tailored to your business use cases.
This code sample demonstrates how to create e-commerce materials (product description, images, and audio) using IntelliNode and different AI models like OpenAI, Google, Stability, and Cohere. You can use the following code functions:
const IntelliNode = require('intellinode');
The generateProductDescription()
function utilizes the RemoteLanguageModel
class, which fetches the product description from an AI model like OpenAI or Cohere. Provide the appropriate apiKey
, modelBackend
, and modelName
.
async function generateProductDescription(textInput, apiKey, modelBackend) {
// available models: OPENAI or COHERE
const modelName = (modelBackend === IntelliNode.SupportedLangModels.OPENAI) ? 'text-davinci-003' : 'command';
const langModel = new IntelliNode.RemoteLanguageModel(apiKey, modelBackend);
const results = await langModel.generateText(new IntelliNode.LanguageModelInput({
prompt: textInput,
model: modelName,
maxTokens: 300
}));
return results[0].trim();
}
The getImageDescription()
function uses the Chatbot
class to generate tuned image description from user message. The users might not enter a text suitable for image generation models and this layer will ensure the image prompt quality.
async function getImageDescription(textInput, openaiKey) {
const chatbot = new IntelliNode.Chatbot(openaiKey);
const input = new IntelliNode.ChatGPTInput('generate image description from paragraph to use it as prompt to generate image from DALL·E or stable diffusion image model. return only the image description to use it as direct input');
input.addUserMessage(textInput);
const responses = await chatbot.chat(input);
return responses[0].trim();
}
The generateImage()
function uses the RemoteImageModel
class, which generates images from the description text. The generated images use stable diffusion or DALL·E models.
async function generateImage(imageText, apiKey, modelBackend) {
// available models: OPENAI or STABILITY
modelBackend = IntelliNode.SupportedImageModels.STABILITY
const imgModel = new IntelliNode.RemoteImageModel(apiKey, modelBackend);
const imageInput = new IntelliNode.ImageModelInput({
prompt: imageText,
numberOfImages: 3,
width: 512,
height: 512
});
return await imgModel.generateImages(imageInput);
}
The generateSpeech()
uses the RemoteSpeechModel
and AudioHelper
classes, which generate and save audio content based on the text input.
async function generateSpeech(textInput, apiKey, modelBackend) {
// modelBackend = IntelliNode.SupportedSpeechModels.GOOGLE
const speechModel = new IntelliNode.RemoteSpeechModel(apiKey);
const input = new IntelliNode.Text2SpeechInput({ text: textInput, language: 'en-gb' });
const audioContent = await speechModel.generateSpeech(input);
return IntelliNode.AudioHelper.decode(audioContent);
}
IntelliNode provides powerful functions like generate_html_page()
and save_html_page()
to create and store HTML pages with CSS and JavaScript. In this use case, we will demonstrate how to generate an HTML registration page using GPT-4.
First import the Gen function
const { Gen } = require("intellinode");
Use the generate_html_page()
function to create an HTML page based on a specific use case, such as a registration page.
const openaiKey = 'your_openai_api_key';
const modelName = 'gpt-4'; // or 'gpt-3.5-turbo'
const prompt = "Create a registration page with flat modern design.";
const htmlContent = await Gen.generate_html_page(prompt, openaiKey, modelName);
To save the generated HTML page directly to the file system, use the save_html_page()
function instead of the generate html:
const folder = './views';
const file_name = 'registration_page.html';
await Gen.save_html_page(prompt, folder, file_name, openaiKey, modelName);