Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[feature] support loading fake model weight for python benchmarks. #49

Merged
merged 1 commit into from
Nov 13, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ __pycache__/
dist/

# 3drparty
/3rdparty/ig
/3rdparty/mklml
/3rdparty/oneCCL
/3rdparty/jsoncpp
Expand Down
7 changes: 5 additions & 2 deletions benchmark/baichuan2-13b/baichuan2-13b.sh
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,12 @@
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

echo "FP16 Performance "

export XFT_FAKE_MODEL=1

python "${SCRIPT_DIR}"/../benchmark.py \
--token_path /data/Baichuan2-13B-Chat \
--model_path /data/Baichuan2-13B-Chat/cpu \
--token_path "${SCRIPT_DIR}"/../../examples/model_config/baichuan2-13b/ \
--model_path "${SCRIPT_DIR}"/../../examples/model_config/baichuan2-13b/ \
--prompt_path "${SCRIPT_DIR}"/prompt_pool.json \
--model_name "Baichuan2-13B" \
--dtype fp16 \
Expand Down
7 changes: 5 additions & 2 deletions benchmark/baichuan2-7b/baichuan2-7b.sh
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,12 @@
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

echo "FP16 Performance "

export XFT_FAKE_MODEL=1

python "${SCRIPT_DIR}"/../benchmark.py \
--token_path /data/Baichuan2-7B-Chat \
--model_path /data/Baichuan2-7B-Chat/cpu \
--token_path "${SCRIPT_DIR}"/../../examples/model_config/baichuan2-7b/ \
--model_path "${SCRIPT_DIR}"/../../examples/model_config/baichuan2-7b/ \
--prompt_path "${SCRIPT_DIR}"/prompt_pool.json \
--model_name "Baichuan2-7B" \
--dtype fp16 \
Expand Down
7 changes: 5 additions & 2 deletions benchmark/chatglm-6b/chatglm-6b.sh
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,12 @@
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

echo "FP16 Performance "

export XFT_FAKE_MODEL=1

python "${SCRIPT_DIR}"/../benchmark.py \
--token_path /data/chatglm-6b \
--model_path /data/chatglm-6b/cpu \
--token_path "${SCRIPT_DIR}"/../../examples/model_config/chatglm-6b/ \
--model_path "${SCRIPT_DIR}"/../../examples/model_config/chatglm-6b/ \
--prompt_path "${SCRIPT_DIR}"/prompt_pool.json \
--model_name "ChatGLM-6B" \
--dtype fp16 \
Expand Down
7 changes: 5 additions & 2 deletions benchmark/chatglm2-6b/chatglm2-6b.sh
Original file line number Diff line number Diff line change
Expand Up @@ -19,9 +19,12 @@ data_type=bf16_fp16
ilen=3294
olen=512
echo "${data_type} Performance, input len ${ilen}, output len ${olen}"

export XFT_FAKE_MODEL=1

python "${SCRIPT_DIR}"/../benchmark.py \
--token_path /data/chatglm2-6b \
--model_path /data/chatglm2-6b/cpu \
--token_path "${SCRIPT_DIR}"/../../examples/model_config/chatglm2-6b/ \
--model_path "${SCRIPT_DIR}"/../../examples/model_config/chatglm2-6b/ \
--prompt_path "${SCRIPT_DIR}"/prompt_pool.json \
--model_name "ChatGLM2-6B" \
--dtype ${data_type} \
Expand Down
7 changes: 5 additions & 2 deletions benchmark/llama-13b/llama-13b.sh
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,12 @@
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

echo "FP16 Performance "

export XFT_FAKE_MODEL=1

python "${SCRIPT_DIR}"/../benchmark.py \
--token_path /data/llama-13b \
--model_path /data/llama-13b/cpu \
--token_path "${SCRIPT_DIR}"/../../examples/model_config/llama-13b/ \
--model_path "${SCRIPT_DIR}"/../../examples/model_config/llama-13b/ \
--prompt_path "${SCRIPT_DIR}"/prompt_pool.json \
--model_name "Llama-13B" \
--dtype fp16 \
Expand Down
7 changes: 5 additions & 2 deletions benchmark/llama-7b/llama-7b.sh
Original file line number Diff line number Diff line change
Expand Up @@ -17,9 +17,12 @@
SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"

echo "FP16 Performance "

export XFT_FAKE_MODEL=1

python "${SCRIPT_DIR}"/../benchmark.py \
--token_path /data/llama-7b \
--model_path /data/llama-7b/cpu \
--token_path "${SCRIPT_DIR}"/../../examples/model_config/llama-7b/ \
--model_path "${SCRIPT_DIR}"/../../examples/model_config/llama-7b/ \
--prompt_path "${SCRIPT_DIR}"/prompt_pool.json \
--model_name "Llama-7B" \
--dtype fp16 \
Expand Down
30 changes: 30 additions & 0 deletions examples/model_config/baichuan2-13b/special_tokens_map.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
{
"bos_token": {
"content": "<s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": true
},
"eos_token": {
"content": "</s>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": true
},
"unk_token": {
"content": "<unk>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": true
},
"pad_token": {
"content": "<unk>",
"lstrip": false,
"normalized": true,
"rstrip": false,
"single_word": true
}
}
258 changes: 258 additions & 0 deletions examples/model_config/baichuan2-13b/tokenization_baichuan.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,258 @@
# Copyright (c) 2023, Baichuan Intelligent Technology. All rights reserved.

import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple

import sentencepiece as spm
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging


logger = logging.get_logger(__name__)

VOCAB_FILES_NAMES = {"vocab_file": "tokenizer.model"}

PRETRAINED_VOCAB_FILES_MAP = {
"vocab_file": {},
"tokenizer_file": {},
}
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {}


class BaichuanTokenizer(PreTrainedTokenizer):
"""
Construct a Baichuan tokenizer. Based on byte-level Byte-Pair-Encoding.

Args:
vocab_file (`str`):
Path to the vocabulary file.
"""

vocab_files_names = VOCAB_FILES_NAMES
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
model_input_names = ["input_ids", "attention_mask"]

def __init__(
self,
vocab_file,
unk_token="<unk>",
bos_token="<s>",
eos_token="</s>",
pad_token=None,
sp_model_kwargs: Optional[Dict[str, Any]] = None,
add_bos_token=True,
add_eos_token=False,
clean_up_tokenization_spaces=False,
**kwargs,
):
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
bos_token = (
AddedToken(bos_token, lstrip=False, rstrip=False)
if isinstance(bos_token, str)
else bos_token
)
eos_token = (
AddedToken(eos_token, lstrip=False, rstrip=False)
if isinstance(eos_token, str)
else eos_token
)
unk_token = (
AddedToken(unk_token, lstrip=False, rstrip=False)
if isinstance(unk_token, str)
else unk_token
)
pad_token = (
AddedToken(pad_token, lstrip=False, rstrip=False)
if isinstance(pad_token, str)
else pad_token
)
super().__init__(
bos_token=bos_token,
eos_token=eos_token,
unk_token=unk_token,
pad_token=pad_token,
add_bos_token=add_bos_token,
add_eos_token=add_eos_token,
sp_model_kwargs=self.sp_model_kwargs,
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
**kwargs,
)
self.vocab_file = vocab_file
self.add_bos_token = add_bos_token
self.add_eos_token = add_eos_token
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(vocab_file)

def __getstate__(self):
state = self.__dict__.copy()
state["sp_model"] = None
return state

def __setstate__(self, d):
self.__dict__ = d
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
self.sp_model.Load(self.vocab_file)

@property
def vocab_size(self):
"""Returns vocab size"""
return self.sp_model.get_piece_size()

def get_vocab(self):
"""Returns vocab as a dict"""
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab

def _tokenize(self, text):
"""Returns a tokenized string."""
return self.sp_model.encode(text, out_type=str)

def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.sp_model.piece_to_id(token)

def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
token = self.sp_model.IdToPiece(index)
return token

def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (string) in a single string."""
current_sub_tokens = []
out_string = ""
prev_is_special = False
for i, token in enumerate(tokens):
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special and i != 0:
out_string += " "
out_string += self.sp_model.decode(current_sub_tokens) + token
prev_is_special = True
current_sub_tokens = []
else:
current_sub_tokens.append(token)
prev_is_special = False
out_string += self.sp_model.decode(current_sub_tokens)
return out_string

def save_vocabulary(
self, save_directory, filename_prefix: Optional[str] = None
) -> Tuple[str]:
"""
Save the vocabulary and special tokens file to a directory.

Args:
save_directory (`str`):
The directory in which to save the vocabulary.

Returns:
`Tuple(str)`: Paths to the files saved.
"""
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
out_vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "")
+ VOCAB_FILES_NAMES["vocab_file"],
)

if os.path.abspath(self.vocab_file) != os.path.abspath(
out_vocab_file
) and os.path.isfile(self.vocab_file):
copyfile(self.vocab_file, out_vocab_file)
elif not os.path.isfile(self.vocab_file):
with open(out_vocab_file, "wb") as fi:
content_spiece_model = self.sp_model.serialized_model_proto()
fi.write(content_spiece_model)

return (out_vocab_file,)

def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []

output = bos_token_id + token_ids_0 + eos_token_id

if token_ids_1 is not None:
output = output + bos_token_id + token_ids_1 + eos_token_id

return output

def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False,
) -> List[int]:
"""
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` method.

Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.

Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0,
token_ids_1=token_ids_1,
already_has_special_tokens=True,
)

bos_token_id = [1] if self.add_bos_token else []
eos_token_id = [1] if self.add_eos_token else []

if token_ids_1 is None:
return bos_token_id + ([0] * len(token_ids_0)) + eos_token_id
return (
bos_token_id
+ ([0] * len(token_ids_0))
+ eos_token_id
+ bos_token_id
+ ([0] * len(token_ids_1))
+ eos_token_id
)

def create_token_type_ids_from_sequences(
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
) -> List[int]:
"""
Creates a mask from the two sequences passed to be used in a sequence-pair classification task. An ALBERT
sequence pair mask has the following format:

```
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
```

if token_ids_1 is None, only returns the first portion of the mask (0s).

Args:
token_ids_0 (`List[int]`):
List of ids.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.

Returns:
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
"""
bos_token_id = [self.bos_token_id] if self.add_bos_token else []
eos_token_id = [self.eos_token_id] if self.add_eos_token else []

output = [0] * len(bos_token_id + token_ids_0 + eos_token_id)

if token_ids_1 is not None:
output += [1] * len(bos_token_id + token_ids_1 + eos_token_id)

return output
Loading