Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add docstring for auto accelerator #1956

Merged
merged 6 commits into from
Jul 29, 2024
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 9 additions & 8 deletions .azure-pipelines/scripts/codeScan/pydocstyle/scan_path.txt
Original file line number Diff line number Diff line change
Expand Up @@ -15,13 +15,14 @@
/neural-compressor/neural_compressor/strategy
/neural-compressor/neural_compressor/training.py
/neural-compressor/neural_compressor/utils
/neural_compressor/torch/algorithms/mx_quant
/neural-compressor/neural_compressor/common
/neural-compressor/neural_compressor/tensorflow
/neural-compressor/neural_compressor/torch/algorithms/mx_quant
/neural-compressor/neural_compressor/torch/algorithms/static_quant
/neural-compressor/neural_compressor/torch/algorithms/smooth_quant
/neural_compressor/torch/algorithms/pt2e_quant
/neural_compressor/torch/export
/neural_compressor/common
/neural_compressor/torch/algorithms/weight_only
/neural_compressor/torch/algorithms/layer_wise
/neural_compressor/torch/algorithms/mixed_precision
/neural_compressor/tensorflow
/neural-compressor/neural_compressor/torch/algorithms/pt2e_quant
/neural-compressor/neural_compressor/torch/export
/neural-compressor/neural_compressor/torch/algorithms/weight_only
/neural-compressor/neural_compressor/torch/algorithms/layer_wise
/neural-compressor/neural_compressor/torch/algorithms/mixed_precision
/neural-compressor/neural_compressor/torch/utils/auto_accelerator.py
6 changes: 5 additions & 1 deletion neural_compressor/common/benchmark.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Benchmark API for Intel Neural Compressor."""

import argparse
import os
Expand Down Expand Up @@ -242,7 +243,9 @@ def get_numa_node(core_list, reversed_numa_info):


def set_cores_for_instance(args, numa_info):
"""All use cases are listed below:
"""Set cores for each instance based on the input args.

All use cases are listed below:
Params: a=num_instance; b=num_cores_per_instance; c=cores;
- no a, b, c: a=1, c=numa:0
- no a, b: a=1, c=c
Expand Down Expand Up @@ -357,6 +360,7 @@ def generate_prefix(args, core_list):
Args:
args (argparse): arguments for setting different configurations
core_list: ["node_index", "cpu_index", num_cpu]

Returns:
command_prefix (str): command_prefix with specific core list for Linux or Windows.
"""
Expand Down
2 changes: 2 additions & 0 deletions neural_compressor/common/utils/utility.py
Original file line number Diff line number Diff line change
Expand Up @@ -328,6 +328,8 @@ def wrapper(*args, **kwargs):


class ProcessorType(enum.Enum):
"""The processor type."""

Client = "Client"
Server = "Server"

Expand Down
106 changes: 101 additions & 5 deletions neural_compressor/torch/utils/auto_accelerator.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@

# NOTICE: The design adapted from:
# https://github.com/microsoft/DeepSpeed/blob/master/accelerator/abstract_accelerator.py.
"""Auto Accelerator Module."""


# To keep it simply, only add the APIs we need.
Expand All @@ -40,6 +41,8 @@


class AcceleratorRegistry:
"""Accelerator Registry."""

registered_accelerators = {}

@classmethod
Expand Down Expand Up @@ -94,171 +97,253 @@ class CUDA_Accelerator:
name: the accelerator name.
priority: the priority of the accelerator. A larger number indicates a higher priority,
"""

return accelerator_registry.register_accelerator_impl(name=name, priority=priority)


class Auto_Accelerator(ABC): # pragma: no cover
"""Auto Accelerator Base class."""

@classmethod
@abstractmethod
def is_available(cls) -> bool:
"""Check if the accelerator is available."""
pass

@abstractmethod
def name(self) -> str:
"""Get the accelerator name."""
pass

@abstractmethod
def device_name(self, device_indx) -> str:
"""Get the device name."""
pass

@abstractmethod
def set_device(self, device_index):
"""Set the device."""
pass

@abstractmethod
def current_device(self):
"""Get the current device."""
pass

@abstractmethod
def current_device_name(self):
"""Get the current device name."""
pass

@abstractmethod
def device(self, device_index=None):
"""Get the device."""
pass

@abstractmethod
def empty_cache(self):
"""Empty the cache."""
pass

@abstractmethod
def synchronize(self):
"""Synchronize the accelerator."""
pass

def mark_step(self):
"""Trigger graph to run."""
pass


@register_accelerator(name="cpu", priority=PRIORITY_CPU)
class CPU_Accelerator(Auto_Accelerator):
"""CPU Accelerator."""

def __init__(self) -> None:
"""Initialize CPU Accelerator."""
self._name = "cpu"

def name(self) -> str:
"""Get the accelerator name."""
return self._name

@classmethod
def is_available(cls) -> bool:
"""Always return True."""
return True

def device_name(self, device_indx) -> str:
"""Get the device name."""
return "cpu"

def set_device(self, device_index):
"""Do nothing."""
pass

def current_device(self):
"""Get the current device."""
return "cpu"

def current_device_name(self):
"""Get the current device name."""
return "cpu"

def device(self, device_index=None):
"""Do nothing."""
pass

def empty_cache(self):
"""Do nothing."""
pass

def synchronize(self):
"""Do nothing."""
pass


@register_accelerator(name="cuda", priority=PRIORITY_CUDA)
class CUDA_Accelerator(Auto_Accelerator): # pragma: no cover
"""CUDA Accelerator."""

def __init__(self) -> None:
"""Initialize CUDA Accelerator."""
self._name = "cuda"

def name(self) -> str:
"""Get the accelerator name."""
return self._name

@classmethod
def is_available(cls) -> bool:
"""Check if the 'cuda' device is available."""
return torch.cuda.is_available()

def device_name(self, device_indx) -> str:
"""Returns the name of the 'cuda' device with the given index."""
if device_indx is None:
return "cuda"
return f"cuda:{device_indx}"

def synchronize(self):
"""Synchronizes the 'cuda' device."""
return torch.cuda.synchronize()

def set_device(self, device_index):
"""Sets the current 'cuda' device to the one with the given index."""
return torch.cuda.set_device(device_index)

def current_device(self):
"""Returns the index of the current 'cuda' device."""
return torch.cuda.current_device()

def current_device_name(self):
"""Returns the name of the current 'cuda' device."""
return "cuda:{}".format(torch.cuda.current_device())

def device(self, device_index=None):
"""Returns a torch.device object for the 'cuda' device with the given index."""
return torch.cuda.device(device_index)

def empty_cache(self):
"""Empties the cuda cache."""
return torch.cuda.empty_cache()


@register_accelerator(name="xpu", priority=PRIORITY_XPU)
class XPU_Accelerator(Auto_Accelerator): # pragma: no cover
"""XPU Accelerator."""

def __init__(self) -> None:
"""Initialize XPU Accelerator."""
self._name = "xpu"

def name(self) -> str:
"""Get the accelerator name."""
return self._name

@classmethod
def is_available(cls) -> bool:
"""Checks if the 'xpu' device is available.

Returns:
bool: True if the 'xpu' device is available, False otherwise.
"""
if hasattr(torch, "xpu") and torch.xpu.is_available():
return True
else:
return False

def device_name(self, device_indx) -> str:
"""Returns the name of the 'xpu' device with the given index.

Args:
device_indx (int): The index of the 'xpu' device.

Returns:
str: The name of the 'xpu' device.
"""
if device_indx is None:
return "xpu"
return f"xpu:{device_indx}"

def synchronize(self):
"""Synchronizes the 'xpu' device."""
return torch.xpu.synchronize()

def set_device(self, device_index):
"""Sets the current 'xpu' device to the one with the given index.

Args:
device_index (int): The index of the 'xpu' device.
"""
return torch.xpu.set_device(device_index)

def current_device(self):
"""Returns the index of the current 'xpu' device.

Returns:
int: The index of the current 'xpu' device.
"""
return torch.xpu.current_device()

def current_device_name(self):
"""Returns the name of the current 'xpu' device.

Returns:
str: The name of the current 'xpu' device.
"""
return "xpu:{}".format(torch.xpu.current_device())

def device(self, device_index=None):
"""Returns a torch.device object for the 'xpu' device with the given index.

Args:
device_index (int, optional): The index of the 'xpu' device. Defaults to None.

Returns:
torch.device: The torch.device object for the 'xpu' device.
"""
return torch.xpu.device(device_index)

def empty_cache(self):
"""Empties the xpu cache."""
return torch.xpu.empty_cache()


@register_accelerator(name="hpu", priority=PRIORITY_HPU)
class HPU_Accelerator(Auto_Accelerator): # pragma: no cover
"""HPU Accelerator."""

def __init__(self) -> None:
"""Initialize HPU Accelerator."""
self._name = "hpu"

def name(self) -> str:
"""Get the accelerator name."""
return self._name

@classmethod
def is_available(cls) -> bool:
"""Checks if the 'hpu' device is available."""
from .environ import is_hpex_available

if is_hpex_available():
Expand All @@ -267,43 +352,54 @@ def is_available(cls) -> bool:
return False

def device_name(self, device_indx) -> str:
"""Returns the name of the 'hpu' device with the given index."""
if device_indx is None:
return "hpu"
return f"hpu:{device_indx}"

def synchronize(self):
"""Synchronizes the 'hpu' device."""
return torch.hpu.synchronize()

def set_device(self, device_index):
"""Sets the current 'hpu' device to the one with the given index."""
try:
torch.hpu.set_device(device_index)
except Exception as e:
logger.warning(e)

def current_device(self):
"""Returns the index of the current 'hpu' device."""
return torch.hpu.current_device()

def current_device_name(self):
"""Returns the name of the current 'hpu' device."""
return "hpu:{}".format(torch.hpu.current_device())

def device(self, device_index=None):
"""Returns a torch.device object for the 'hpu' device with the given index."""
return torch.hpu.device(device_index)

def empty_cache(self):
"""Empties the hpu cache."""
try:
torch.hpu.empty_cache()
except Exception as e:
logger.warning(e)

def mark_step(self):
"""Trigger graph to run."""
return htcore.mark_step()


def auto_detect_accelerator(device_name="auto") -> Auto_Accelerator:
# Force use the cpu on node has both cpu and gpu: `FORCE_DEVICE=cpu` python main.py ...
# The `FORCE_DEVICE` is case insensitive.
# The environment variable `FORCE_DEVICE` has higher priority than the `device_name`.
# TODO: refine the docs and logic later
"""Automatically detects and selects the appropriate accelerator.

Force use the cpu on node has both cpu and gpu: `FORCE_DEVICE=cpu` python main.py ...
The `FORCE_DEVICE` is case insensitive.
The environment variable `FORCE_DEVICE` has higher priority than the `device_name`.
TODO: refine the docs and logic later
"""
# 1. Get the device setting from environment variable `FORCE_DEVICE`.
FORCE_DEVICE = os.environ.get("FORCE_DEVICE", None)
if FORCE_DEVICE:
Expand Down
Loading