Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support GPTQ on ChatGLM2-6B #1269

Merged
merged 2 commits into from
Sep 21, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -2,14 +2,15 @@
sys.path.append("./")
import math
import time
import re

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.nn.functional import pad

import transformers
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoModelForCausalLM, AutoModel, AutoTokenizer
import datasets
from datasets import load_dataset

Expand Down Expand Up @@ -214,12 +215,14 @@ def skip(*args, **kwargs):
torch.nn.init.normal_ = skip

# model
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, low_cpu_mem_usage=True, trust_remote_code=True)
model.seqlen = args.pad_max_length
model.eval()
if re.search("chatglm", args.model_name_or_path.lower()): # chatglm requires a different way to be loaded
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
model = AutoModel.from_pretrained(args.model_name_or_path, trust_remote_code=True)
else:
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=True)
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, low_cpu_mem_usage=True, trust_remote_code=True)
model = model.eval()

# dataset
tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=True)
calib_dataset = load_dataset(args.dataset, split="train") # default
# calib_dataset = datasets.load_from_disk('/your/local/pile-10k/') # use this if trouble with connecting to HF
calib_dataset = calib_dataset.shuffle(seed=args.seed)
Expand Down
27 changes: 23 additions & 4 deletions neural_compressor/adaptor/torch_utils/gptq.py
Original file line number Diff line number Diff line change
Expand Up @@ -237,7 +237,8 @@ def prepare_dataloader(self):
self.obtain_first_n_samples()
try:
self.inp = [torch.zeros(1) for _ in range(len(self.dataloader))]
self.cache = {"i": 0}
self.cache = {"i": 0} # a dict of list, keyword arguments ("attention_masks", "position_ids", etc.)
self.cache_positional_arguments = [] # a list of list, positional arguments ("rotary_pos_emb" in chatglm)
self.out = [torch.zeros(1) for _ in range(len(self.dataloader))]
self.is_ready = True
except:
Expand Down Expand Up @@ -405,7 +406,7 @@ def pre_quantization(self):
"""Prepare input calibration data and other attributes which are critical for gptq execution."""

# critical: hooker function which collects inputs
def forward(layer, hidden_states, **kwargs):
def forward(layer, hidden_states, *args, **kwargs):
# inputs[inputs_info['idx']] = input_ids # TODO solve the problem of batchsize!=1
self.inp[self.cache["i"]] = hidden_states
self.cache["i"] += 1
Expand All @@ -417,6 +418,14 @@ def forward(layer, hidden_states, **kwargs):
self.cache[arg] = []
self.cache[arg].append(kwargs[arg])
continue
# copy positional arguments, positional arguments are sensitive for their order, be cautious!
# Most models in HF has avoid this, but some models still use positional arguments other than
# hidden_states, chatglm2-6b etc.
for idx, item in enumerate(args):
if (idx + 1) > len(self.cache_positional_arguments):
# initialize
self.cache_positional_arguments.append([])
self.cache_positional_arguments[idx].append(item)
raise ValueError

# Step1: fetch the embeddings and other layers before the transformer stack.
Expand Down Expand Up @@ -459,11 +468,19 @@ def forward(layer, hidden_states, **kwargs):
logger.info("GPTQ quantization prepared.")

def gather_single_batch_from_dict(self, data_dict, idx):
# obtain a set of keyword input from cache
single_batch = {}
for k, v in data_dict.items():
single_batch[k] = data_dict[k][idx]
return single_batch

def gather_single_batch_from_list(self, data_list, idx):
# obtain a set of keyword input from cache
single_batch = []
for data_item in data_list:
single_batch.append(data_item[idx])
return single_batch

@torch.no_grad()
def execute_quantization(self, means=None, stds=None):
"""Run quantization."""
Expand Down Expand Up @@ -520,7 +537,8 @@ def tmp(_, inp, out):
for j in range(len(self.dataloader)):
# self.inp[j] shape: [1, seq_len, hidden_size] (batchsize is 1 by default)
cache_batch = self.gather_single_batch_from_dict(self.cache, j)
self.out[j] = transformer_block(self.inp[j], **cache_batch)[0]
cache_positional_batch = self.gather_single_batch_from_list(self.cache_positional_arguments, j)
self.out[j] = transformer_block(self.inp[j], *cache_positional_batch, **cache_batch)[0]
self.cache["i"] = idx
for h in handles:
h.remove()
Expand Down Expand Up @@ -551,7 +569,8 @@ def tmp(_, inp, out):
for j in range(len(self.dataloader)):
# self.inp[j] shape: [1, seq_len, hidden_size] (batchsize is 1 by default)
cache_batch = self.gather_single_batch_from_dict(self.cache, j)
self.out[j] = transformer_block(self.inp[j], **cache_batch)[0]
cache_positional_batch = self.gather_single_batch_from_list(self.cache_positional_arguments, j)
self.out[j] = transformer_block(self.inp[j], *cache_positional_batch, **cache_batch)[0]
self.cache["i"] = idx
self.gptq_related_blocks["transformers"][block_idx] = transformer_block.cpu()
del gptq_for_this_block
Expand Down